
Inquisit 6 Help
Welcome to Inquisit 6 Help. You can browse through the table of contents for categories of help, or you can
search for help based on keywords using the Index or the Search tabs. In addition, the Inquisit script editor
supports context sensitive help - just put the cursor inside any script element and press F1, and the help
topic for that element will open. For more information about Inquisit, you may want to join the Millisecond
Online Forums, a virtual community where Inquisit users can post questions and share information about
Inquisit. In addition, you may visit our web site at http://www.millisecond.com or email us at

Getting Started
Introduction - an overview of Inquisit and how it works.

Inquisit Tutorials - walk through the steps of creating an Inquisit script.

Designing Experiments
Language Reference - a complete guide to Inquisit's commands.

How To - programming tips and tricks, and answers to frequently asked questions.

Additional Online Resources
User Forums - a message board for questions and answers from the Inquisit
community.

Inquisit Task Library - download sample scripts demonstrating how to program a
variety of tasks in Inquisit.

Page 1

http://www.millisecond.com/forums/
http://www.millisecond.com/forums/
http://www.millisecond.com
http://www.millisecond.com/forums/
http://www.millisecond.com/download/library/
http://www.millisecond.com

Introducing Inquisit 6
Inquisit is a general purpose psychological experimentation application for designing and administering
psychological experiments and measures. Inquisit can run a given script locally on a Windows PC or Mac, or
it can be used to administer tasks over the web. Inquisit can be used to implement a wide range of
psychological measures, including reaction time tasks, psychophysiological experiments, attitude measures,
surveys, games, learning and memory tasks, judgement and decision making paradigms, and more.

Overview
An Inquisit experiment is specified using Inquisit's powerful and intuitive scripting language. The script defines
all of the pieces of the experiment such as the stimuli, questionaire items, trials, blocks of trials, instructions,
as well as the logic determining the flow of events. An Inquisit script is saved as a plain text UTF-8 file with
the *.iqx file extension. The file format is unicode, so it can store and present characters from any locale,
including east Asian, Hebrew, Arabic, and Cyrillic character sets.

To edit a script, simply open the script file using the Open command on the File menu. Once you've opened a
script, you can edit it in the rich text editor, or validate the syntax, and run it using the corresponding
commands from the Experiment menu.

The Inquisit Scripting Language
The Inquisit language was designed to be easy and approachable to nonprogrammers who are familiar with
the basics of experimental psychology. The structure of the Inquisit scripting language should be familiar to
anyone who has programmed html and javascript. However, some of the cumbersome aspects of html syntax
have been streamlined to make Inquisit scripts easier to read and write.

The Inquisit scripting language consists of elements and attributes, which enable you declare and configure
the various parts that make up the task. Elements are the basic building blocks of a script. Commonly used
elements include
survey
surveypage
expt (experiment)
block
trial
picture
text
video
html
data
just to name a few.

Each element, in turn, has a set of attributes that determine exactly how that element behaves. For example,
Inquisit's text element, which defines a set a text stimuli, has attributes that specify the color, font, and the
location of the screen to present the text.

Some elements, such as the expt, block, and trial elements, include event handler attributes that are
triggered when the element is run. These enable you to dynamically get and set properties on any element as
the script is running using a simple expression syntax similar to Javascript. These special event handler
attributes are useful for defining more sophisticated paradigms in which the flow of the task changes based
on the subject's performance or other conditions.

Writing an Inquisit script is simply a matter of defining the elements of your experiment and setting their
attributes to the desired values. Once you understand this basic idea, it's just a matter of familiarizing
yourself with the details of the elements and attributes. To get started learning how to write Inquisit scripts,
read through the tutorials.

Page 2

Running Scripts
For experiments run on a dedicated Windows PC or Mac, scripts are written and run using the Inquisit
application. Once you have written script, downloaded one from the Inquisit Task Library, or obtained one
from some other source, you can open the script in Inquisit run the entire experiment or right click on a
particular element to run just that piece. For web experiments, scripts are run by uploading them to the
Millisecond server from your account and then starting them from the launch web page.

When a script is run, Inquisit first parses its commands. If the script contains no errors, it runs. Otherwise,
Inquisit reports the errors in the output window at the bottom of the screen. If you click the error, the editor
will jump to the line of code that caused the problem. Note that Inquisit does not compile a script into an
executable file that can be run by itself. Running a script thus requires the Inquisit application to be installed
on the machine, or that it be launched from an Inquisit web page that is specially designed to run it over the
web.

Recording Data
As Inquisit Lab runs an experiment, it writes the data to a file. By default, the data file is located in the same
folder as the script file using the same name as the script file except that the file extension is changed to
"dat". By default, Inquisit Web saves data files to the Inquisit web server where you can log in to your
Millisecond account and download the files.

For cognitive tasks, each line of data in the file corresponds to a single trial. In addition, a task can be
configured to recorded a single line of summary data for each participant using the summarydata element.
For surveys, all responses from each participant are stored on a single line. Inquisit data files can be
imported directly into programs like SPSS and Excel for analysis. Inquisit can be configured to record
metrics such as mean and median response latencies, standard deviations, percentage of correct response,
and even custom statistics, but for most purposes, it is necessary to analyze the data using a statistical
analysis program.

Learning Resources
To learn Inquisit, we suggest the following:

1. Read through the tutorials.
2. Download and run scripts from the Inquisit Task Library.
3. Make minor modifications to a scripts from the library using the language reference as your guide

(tip: from the editor, press F1 and the reference topic for the currently selected element will open).
4. Read through the How To topics.
5. If you get stuck, go to millisecond.com and enter your question in the search box (powered by

Google). If you are unable to find the information you need, you can post a question to our online
forums or email support@millisecond.com.

Page 3

http://www.millisecond.com/download/library/
http://www.millisecond.com/download/library/
http://www.millisecond.com
http://www.millisecond.com
http://www.millisecond.com/forums/
http://www.millisecond.com/forums/

Inquisit Walkthrough Tutorials
The following tutorials will guide you through the process of implementing a variety of different psychological
tests.

Creating a test or survey is a simple matter of editing script containing instructions and configuration settings
telling Inquisit what to do, when to do it, and which data to record (e.g. reaction times, survey responses).

The text that Inquisit uses to perform a set of operations is called a script, typically saved as a file with the
*.iqx or *.iqzip file extension. The scripts for the tutorials can be downloaded from our test library here:
http://www.millisecond.com/download/library/Tutorials/.

Simplified Implicit Attitude Task This is a stripped down nonstandard version of the IAT that illustrates basic
Inquisit programming concepts. The script for this tutorial is in the file iat_tutorial.iqx.

IAT with Custom Categories and Items This shows how to modify a standard IAT using your own attribute and
target categories.

Demographic Survey The script for this tutorial is in the file demographics.iqx.

Standard Picture IAT This builds a standard picture IAT from scratch. The tutorial is in the file pictureiat.iqx.

Subliminal Priming Task The script for this tutorial is in the file subliminal_tutorial.iqx.

Covert Attention Task The script for this tutorial is in the file ca_tutorial.iqx.

Dot probe Task The script for this tutorial is in the file ca_tutorial.iqx.

Page 4

http://www.millisecond.com/download/library/Tutorials/
http://www.millisecond.com/download/library/Tutorials/

Tutorial: IAT with Custom Categories and
Items
This tutorial demonstrates how to customzie the Implicit Attitude Task (IAT) as developed by Tony Greenwald
et al. The tutorial starts with an IAT template that measures implicit attitudes towards flowers and insects,
and shows how to easily replace those categories with your own custom categories and stimulus items.

On the following pages, Inquisit commands are printed in blue, and comments are printed in black.

Before you Begin
1. Download and install Inquisit Lab
2. Download the Picture IAT script from the Millisecond Test Library, and double-click to open in

Inquisit Lab.

Steps
1. Modifying Attribute Categories
2. Modifying Target Categories
3. Modifing Task Instructions
4. Changing Response Keys

Modifying Attribute Categories

Page 5

http://www.millisecond.com/download/
http://www.millisecond.com/download/library/v6/iat/pictureiat/pictureiat.iqzip

Modifying Attribute Categories
The IAT script was organized so that the portions to be modified are conveniently located at the top of the
document. The first thing you'll see at the top is a comment with helpful instructions on modifying the stimuli:

**
**

**
**

EDITABLE STIMULI: change editable stimuli here

**
**

**
**

This sample IAT can be easily adapted to different target
categories

and attributes. To change the categories, you need only change the

stimulus items and labels immediately below this line.

**

This text is simply a comment for someone authoring a script. It is not a part of the IAT itself, and does not
have any impact on how the script runs.

The next section of the script shows attribute labels along with the stimulus items that serve as examples of
either attribute category:

<item attributeAlabel>

/1 = "Good"

</item>

<item attributeA>

/1 = "Marvelous"

/2 = "Superb"

/3 = "Pleasure"

/4 = "Beautiful"

/5 = "Joyful"

/6 = "Glorious"

Page 6

/7 = "Lovely"

/8 = "Wonderful"

</item>

<item attributeBlabel>

/1 = "Bad"

</item>

<item attributeB>

/1 = "Tragic"

/2 = "Horrible"

/3 = "Agony"

/4 = "Painful"

/5 = "Terrible"

/6 = "Awful"

/7 = "Humiliate"

/8 = "Nasty"

</item>

For our IAT, we will change the attributes labels to "Strong" and "Weak" in order to measure how attitudes
towards men and women conform to gender stereotyping, and we'll change the stimulus items to examples of
these categories.

<item attributeAlabel>

/1 = "Strong"

</item>

<item attributeA>

/1 = "Power"

/2 = "Command"

Page 7

/3 = "Dominant"

/4 = "Succeed"

/5 = "Assert"

/6 = "Confident"

/7 = "Control"

/8 = "Bold"

</item>

<item attributeBlabel>

/1 = "Weak"

</item>

<item attributeB>

/1 = "Timid"

/2 = "Submissive"

/3 = "Fragile"

/4 = "Follow"

/5 = "Fail"

/6 = "Obey"

/7 = "Hesitant"

/8 = "Uncertain"

</item>

There, that was pretty easy. At this point, we have an IAT that measures implicity associations of flowers and
insects as weak or strong. While this may be of interest to botanists and entomologists, the next step for us
is to modify the target categories to measure attiitudes towards men and women.

Overview Modifying Target Categories

Page 8

Modifying Target Categories
The next section of the IAT script contains the defintions of the target category labels and stimulus items. In
this particular IAT, the targets are represented using images instead of text. Thus, the items refer to the
names of image files to display instead of words:

<item targetAlabel>

/1 = "Flowers"

</item>

<item targeta>

/1 = "flower1.jpg"

/2 = "flower2.jpg"

/3 = "flower3.jpg"

/4 = "flower4.jpg"

/5 = "flower5.jpg"

/6 = "flower6.jpg"

/7 = "flower7.jpg"

/8 = "flower8.jpg"

</item>

<item targetBlabel>

/1 = "Insects"

</item>

<item targetb>

/1 = "insect1.jpg"

/2 = "insect2.jpg"

/3 = "insect3.jpg"

/4 = "insect4.jpg"

Page 9

/5 = "insect5.jpg"

/6 = "insect6.jpg"

/7 = "insect7.jpg"

/8 = "insect8.jpg"

</item>

The labels are defined in <item targetAlabel> and <item targetBlabel>, and the stimulus items are defined in
<item targetA> and <item targetB>. First, we'll change our target labels and stimuli for category A, Gryffindor,
as follows:

<item targetAlabel>

/1 = "Gryffindor"

</item>

Next, we'll changes the image items. First, I must copy the image files you wish to use to the SAME
FOLDER as the script file you are currently editing. If they aren't in the same folder, Inquisit Lab won't know
where to find them and will show an error when you try to run the script. In this example, you can download 5
pictures representing Gryffindor and name them gryffindor1.jpg through gryffindor5.jpg. Note that the Inquisit
IAT allows you to specify as many items as you wish, the number need not be 8.

<item targeta>

/1 = "gryffindor1.jpg"

/2 = "gryffindor2.jpg"

/3 = "gryffindor3.jpg"

/4 = "gryffindor4.jpg"

/5 = "gryffindor5.jpg"

</item>

Next we'll create change the label and stimuli for category B, Slytherin:

<item attributeBlabel>

/1 = "Slytherin"

</item>

<item attributeB>

/1 = "slytherin1.jpg"

/2 = "slytherin2.jpg"

Page 10

/3 = "slytherin3.jpg"

/4 = "slytherin4.jpg"

/5 = "slytherin5.jpg"

/6 = "slytherin6.jpg"

/7 = "slytherin7.jpg"

/8 = "slytherin8.jpg"

</item>

If you're goal is to simply to adapt the IAT to a particular set of attributes and targets, I have good news.
You're done! To run your IAT, just select the Run command on Inquisit's Experiment menu. Now go collect
some data.

In the next section, we'll cover where task instructions for in the IAT are defined in case you need to modify
the text or translate the instructions to another language.

Modifying Attribute Categories Modifying Task Instructions

Page 11

Modifying Task Instructions
Typically, you will NOT need to modify the IAT instructions.

If you do need to modify them, for example, because you are testing non-native English speakers, or a
population that would benefit from additional or specially worded instructions, you can easily modify the text
to suit your needs. The IAT sample includes general instructions that have been written to apply to any IAT,
regardless of the attributes or targets.

If you scroll down below the target category definitions, you'll find the following element, which specifies the
text for 7 pages of instructions that appear throughout the IAT. Instructions are defined using the <item>
element, just as the attribute and target stimuli were. One difference, however, is that the instruction items
formatted with line breaks, which helps make them more readable when presented on the screen.

<item instructions>

/ 1 = "Put your left finger on the 'E' response key for items that
belong to the category '<%expressions.leftTarget%>'.

Put your right finger on the 'I' response key for items that belong
to the category '<%expressions.rightTarget%>'.

~nItems will appear one-by-one in the middle of the screen.

~nIf you make an error, a red X will appear - to continue, press the
other response key.

~nGo as fast as you can while making as few errors as possible."

/ 2 = "Put your left finger on the 'E' response key for items that
belong to the category '<%item.attributeAlabel.item(1)%>'.

Put your right finger on the 'I' response key for items that belong
to the category '<%item.attributeBlabel.item(1)%>'.

~nIf you make an error, a red X will appear - to continue, press the
other response key.

~nGo as fast as you can while making as few errors as possible."

/ 3 = "Press the left 'E' key for '<%item.attributeAlabel.item(1)%>'
and '<%expressions.leftTarget%>'.

Press the right 'I' key for '<%item.attributeBlabel.item(1)%>' and
'<%expressions.rightTarget%>'.

~nEach item belongs to only one category.

~nIf you make an error, a red X will appear - to continue, press the
other response key.

~nGo as fast as you can while making as few errors as possible."

Page 12

/ 4 = "This is the same task as the previous one.

~n~nPress the left 'E' key for '<%item.attributeAlabel.item(1)%>'
and '<%expressions.leftTarget%>'.

Press the right 'I' key for '<%item.attributeBlabel.item(1)%>' and
'<%expressions.rightTarget%>'.

~nEach item belongs to only one category.

~nGo as fast as you can while making as few errors as possible."

/ 5 = "Attention! The labels have changed sides.

~nPress the left 'E' key for '<%expressions.rightTarget%>'.

Press the right 'I' key for '<%expressions.leftTarget%>'.

~nGo as fast as you can while making as few errors as possible."

/ 6 = "Press the left 'E' key for '<%item.attributeAlabel.item(1)%>'
and '<%expressions.rightTarget%>'.

Press the right 'I' key for '<%item.attributeBlabel.item(1)%>' and
'<%expressions.leftTarget%>'.

~nIf you make an error, a red X will appear - to continue, press the
other response key.

~nGo as fast as you can while making as few errors as possible."

/ 7 = "This is the same task as the previous one.

~nPress the left 'E' key for '<%item.attributeAlabel.item(1)%>' and
'<%expressions.rightTarget%>'.

Press the right 'I' key for '<%item.attributeBlabel.item(1)%>' and
'<%expressions.leftTarget%>'

~nEach item belongs to only one category.

~nGo as fast as you can while making as few errors as possible."

</item>

You can modify the instruction pages just as you did the attributes and category items, by simply editing the
text within quotation marks.

Page 13

If you make significant change to the instructions, you might also need to change the size and location at
which the text is presented on the screen. The element that controls how instruction text is presented is the
following:

<text instructions>

/ items = instructions

/ position = (10%, 25%)

/ halign = left

/ valign = top

/ hjustify = left

/ vjustify = center

/ size = (80%, 50%)

/ select = values.instructionIndex

</text>

The <text> element is used to define how a set of text items are presented. The first command in the
element, / items = instructions, specifies that the actual text items are defined in an <item> element called
"instuctions", which is the <item instruction> element we just covered above. The / hjustify = left command
specifies that text should be left justified. You can also set this to "center" or "right" (e.e., for right to left
languages like Hebrew). The / size = (90%, 60%) specifies the size of the bounding rectangle in which the
text should be presented (and words are wrapped). In this case, the width is 90% of the screen, and the
height is 60%. By using percentages, the size will scale across monitors with different display resolutions.
The /position = (50%, 85%) command specifies the position on the screen, which is the located horizontally
at the midpoint of the screen and 85% of the way veritically towards the bottom. The /valign = bottom
command specifies that the bottom of the bounding rectangle containing the text should align with the point
on the screen specified by the position command. The rest we'll ignore for now.

Note that if you need to resize the text itself, you can do so using the /fontstyle command. To change the
fontstyle, insert the cursor inside the <text instructions> element and select the "Font Wizard" command
from the Tools menu. This will launch a graphical font picker that will allow you to choose the font parameters
and insert the corresponding /fontstyle command into the script.

Modifying Target Categories Changing Response Keys

Page 14

Changing Response Keys
By default, the IAT uses the E and I keys to indicate a left and right response. The response keys are defined
using the <trial> element, which is rseponsible for presenting stimuli and gathering responses. The IAT has
six different <trial> elements. The first two, shown below, present stimuli from attribute A and attribute B
respectively:

<trial attributea>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = attributeA, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

<trial attributeb>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = attributeB, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

The validresponse command defines two permissible responses for either trial, "E" and "I". The
correctresponse defines which of these responses is considered correct for purposes of scoring and error
feedback. For attribute A, the "E" key is always correct. For attribute B, the "I" key is correct. You can
change the keys used for responding by replacing "E" and "I" with whatever character you like. If you are
using another input device such as a response box, you can replace these with the numeric values
corresponding to the buttons.

The remaining four trials present targets A and B. Recall that the IAT presents the targets with both
compatible and incompatible attribute pairings, so there are two trials defined for each target category that
vary in whether "E" or "I" is considered the correct response. Again, the particular keys used can be modified
as they were with the attribute trials.

<trial targetBleft>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = targetB, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

Page 15

<trial targetBright>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = targetB, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

<trial targetAleft>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = targetA, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

<trial targetAright>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = targetA, errorReminder]

/ posttrialpause = parameters.ISI

</trial>

The tutorial is now complete! You can run the IAT by selecting the "Run" command on the "Experiment"
menu.

Modifying Instructions Back to Overview

Page 16

Tutorial: Standard Picture IAT
Download script for this tutorial.

This tutorial builds an Implicit Attitude Task (IAT) modeled after the version that runs on the Project Implicit
web site (www.projectimplicit.org). This version of the task measures implicit attitudes towards flowers and
insects as represented by pictures.

This tutorial walks through the process of building an IAT from scratch. If your goal is simply to adapt the IAT
to your own attribute and target categories, you need only make a few simple modifications to the sample
script as indicated at the end of the section on creating text stimuli; you can skip the rest. This tutorial will be
of interest to anyone interested in the details of the IAT procedure, or who wishes to modify the procedure.
The tutorial also illustrates a number of intermediate and advanced concepts that are relevant to other
procedures besides the IAT.

On the following pages, Inquisit commands are printed in blue, and comments are printed in black:

Before you Begin
1. Download and install Inquisit Lab

Steps
1. Creating Text and Picture Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

Creating Text Stimuli

Page 17

http://www.millisecond.com/download/library/tutorials/
http://www.projectimplicit.org
http://www.millisecond.com/download/

Creating Text and Picture Stimuli
The first step in creating our script is to define the various stimuli that will be presented in the IAT. In this
case, the stimuli will be a mix of text (good and bad words) and pictures (flowers and insects). Other stimuli
include task instructions, a big red "X" for an error message, and category labels to remind participants which
response keys map to which categories.

The good and bad text stimuli are defined as follows:

<text attributeA>

/ items = attributeA

/ txcolor = (0, 255, 0)

</text>

<text attributeB>

/ items = attributeB

/ txcolor = (0, 255, 0)

</text>

The txcolor attribute sets the red, green, and blue components of the text color. Green is set to the maximum
value, wherease red and blue are 0, so both sets of words will appear green. The actual words in the set are
specified separately in item elements called "attributeA" and "attributeB", which are defined below. We'll use
generic names like "attribruteA" throughout the script to illustrate that the script contains mostly generic IAT
logic that can be easily adapted to different target categories and attributes.

Next, we'll define the pictures representing the target categories, flowers and insects:

<picture targetB>

/ items = targetB

/ size = (20%, 20%)

</picture>

<picture targetA>

/ items = targetA

/ size = (20%, 20%)

</picture>

Like the text elements, the items are defined in separate item elements. The size of the pictures is set to
20% of the height and width of the screen. In fact, all sizes for pictures and text in this script will be defined in
terms of percentage of the screen. This allows the IAT to scale proportionally to different monitor sizes,

Page 18

making it suitable for the web where users run a wide range of display systems.

Now we'll define the category labels that appear in the upper left and right corners of the screen. The attribute
labels are as follows:

<text attributeAleft>

/ items = attributeAlabel

/ valign = top

/ halign = left

/ position = (5%, 5%)

/ txcolor = (0, 255, 0)

</text>

<text attributeBright>

/ items = attributeBlabel

/ valign = top

/ halign = right

/ position = (95%, 5%)

/ txcolor = (0, 255, 0)

</text>

The first label is presented in the upper left corner at a 5% margin from the upper and left edges of the screen
as defined by the position attribute. The second label is presented in the upper right corner of the screen,
again with 5% margins. The color of both labels is green, just like the stimuli themselves. The items attribute
specifies that the actual label text is defined in an item elements below.

Now for the target labels. These are similar to the attribute labels, except that they are presented in the
default text color (we'll set the default to white later in the tutorial).

<text targetAleft>

/ items = targetAlabel

/ valign = top

/ halign = left

/ position = (5%, 5%)

</text>

<text targetBright>

Page 19

/ items = targetBlabel

/ valign = top

/ halign = right

/ position = (95%, 5%)

</text>

Recall that in the IAT, the target categories switch sides midway through the test, so we'll also define labels
that place category A on the right and B on the left:

<text targetBleft>

/ items = targetBlabel

/ valign = top

/ halign = left

/ position = (5%, 5%)

</text>

<text targetAright>

/ items = targetAlabel

/ valign = top

/ halign = right

/ position = (95%, 5%)

</text>

Next we'll create category labels for the critical trials where the targets and attributes are mixed together, for
example, "Flowers or Good" and "Insects or Bad". On these trials, we'll present the target labels we created
above. Just below those labels we'll present the word "or", and just below those the attribute labels will be
presented:

<text orleft>

/ items = ("or")

/ valign = top

/ halign = left

/ position = (5%, 12%)

</text>

Page 20

<text attributeAleftmixed>

/ items = attributeAlabel

/ valign = top

/ halign = left

/ position = (5%, 19%)

/ txcolor = (0, 255, 0)

</text>

These labels are similar to those above, except that the position attribute specifies that the "or" label be
presented 12% of the way from the top of the screen just below the target label. The attribute label appears
19% of the way down the screen below the "or". Now we'll create the corresponding labels for the right side of
the screen:

<text orright>

/ items = ("or")

/ valign = top

/ halign = right

/ position = (95%, 12%)

</text>

<text attributeBrightmixed>

/ items = attributeBlabel

/ valign = top

/ halign = right

/ position = (95%, 19%)

/ txcolor = (0, 255, 0)

</text>

That does it for the labels. Now we'll define instruction text:

<text instructions>

/ items = instructions

/ hjustify = left

/ size = (90%, 60%)

Page 21

/ position = (50%, 85%)

/ valign = bottom

/ select = instructions

/ fontstyle = ("Arial", 3.5%)

</text>

The instructions text element differs from the others above in that it uses the size attribute to define a
rectangle within which the presented text is word-wrapped. This is useful for displaying sentences and
paragraphs. The hjustify command specifies that text should be left justified within this rectangle. Whereas
the previous text elements use the default font, the instructions element specifies the "Arial" font at 3.5% of
the screen height.

The final difference to note is the select attribute. There are a total of 7 instruction items (defined below).
Each time this text element is presented, a different item is selected for presentation. The select attribute
specifies that the rules for selecting the next item are contained in a counter element named instructions,
which is defined as follows:

<counter instructions>

/ resetinterval = 20

/ select = sequence(1, 2, 3, 4, 5, 6, 7)

</counter>

The counter element allows you to create a customized selection algorithm. In this case, the counter's select
attribute specifies that items should be selected in sequence (1, 2, 3, 4, 5, 6, 7). What does the resetinterval
mean? By default, counters only remember selection for the duration of a single block. Once that block is
over, the counter is reset, its memory erased, so that next time it is used for selection, it will start the
sequence from the begining. The resetinterval attribute specifies how many blocks the counter memory lasts.
We want the counter to track the state of the sequence for the duration of the experiment, so we've set it here
to an arbitrary high number of 20. Any number greater than the number of blocks in the IAT would do the trick
here.

Next we'll create a simple text that tells participants to hit the space bar to advance past the instructions.
This appears in the lower middle of the screen beneath the instructions text.

<text spacebar>

/ items = ("Press the SPACE BAR to begin.")

/ position = (50%, 95%)

/ valign = bottom

/ fontstyle = ("Arial", 3.5%)

</text>

Just one last text element to create and we'll move on to the actual item sets used by some of the stimuli
above.

<text error>

/ position = (50%, 75%)

Page 22

/ items = ("X")

/ color = (255, 0, 0)

/ fontstyle = ("Arial", 10%, true)

</text>

The element above creates an error stimulus, which is a big red "X", presented in a bold Arial font that is 10%
of the height of the screen. Hard for our participants to miss that.

If you're goal is simply to adapt the IAT to a specific set of target and attribute categories, the last section
below is by far the most interesting. This section defines the labels and members of each category. The logic
contained in the rest of the script is generic to any category. Thus, in order to change the categories, we can
make all of our modifications here and leave the rest of the IAT procedure as is.

First we'll define the label and members of the "Good" category:

<item attributeAlabel>

/1 = "Good"

</item>

<item attributeA>

/1 = "Marvelous"

/2 = "Superb"

/3 = "Pleasure"

/4 = "Beautiful"

/5 = "Joyful"

/6 = "Glorious"

/7 = "Lovely"

/8 = "Wonderful"

</item>

Next we'll define the label and members of the "Bad" category:

<item attributeBlabel>

/1 = "Bad"

</item>

<item attributeB>

Page 23

/1 = "Tragic"

/2 = "Horrible"

/3 = "Agony"

/4 = "Painful"

/5 = "Terrible"

/6 = "Awful"

/7 = "Humiliate"

/8 = "Nasty"

</item>

Our IAT will test participants' preferences for flowers or insects, so the following specify the labels and
pictures files for these categories:

<item targetAlabel>

/1 = "Flowers"

</item>

<item targetA>

/1 = "flower1.jpg"

/2 = "flower2.jpg"

/3 = "flower3.jpg"

/4 = "flower4.jpg"

/5 = "flower5.jpg"

/6 = "flower6.jpg"

/7 = "flower7.jpg"

/8 = "flower8.jpg"

</item>

<item targetBlabel>

/1 = "Insects"

</item>

Page 24

<item targetB>

/1 = "insect1.jpg"

/2 = "insect2.jpg"

/3 = "insect3.jpg"

/4 = "insect4.jpg"

/5 = "insect5.jpg"

/6 = "insect6.jpg"

/7 = "insect7.jpg"

/8 = "insect8.jpg"

</item>

That's does it for stimuli. This section has demonstrated a number of concepts, including presenting pictures
and text, controlling stimulus size and position on the screen, specifying size, color, and face of a font, using
a custom algorithm for stimulus item selection, and more.

Overview Creating Instructions

Page 25

Creating Instructions
Instructions can be presented as text stimuli like those created in the previous section. Inquisit also provides
a built-in facility for presenting instruction pages in html or plain text. In this tutorial, we will use this facility to
present a summary of the participant's performance.

The summary page is defined as follows:

 <page summary>

^Below is a summary of your average response time for two different
configurations.

^^Configuration 1: <% item.targetAlabel.1 %> with <%
item.attributeAlabel.1 %>, <% item.targetBlabel.1 %> with <%
item.attributeBlabel.1 %>

^ <%block.compatibletest.meanlatency%> milliseconds

^^Configuration 2: <% item.targetAlabel.1 %> with <%
item.attributeBlabel.1 %>, <% item.targetBlabel.1 %> with <%
item.attributeAlabel.1 %>

^ <%block.incompatibletest.meanlatency%> milliseconds

^^Did you respond much more quickly on one of the configurations
than the other? If so, that configuration may be more consistent
with your attitudes about these categories.

^^Thank you for your participation. Please press 'Continue' to end
the test.

</page>

The "^" character is used to force a line break when the page is presented on screen. The page also includes
several properties enclosed in "<% %>". When the page is displayed, these properties are replaced by the
actual underlying property values. For example, <% block.compatibletest.meanlatency %> is replaced by the
mean latency on the block named "compatibletest", and <% item.targetAlabel.1 %> is replaced by the first
item in the item set named "targetAlabel".

Next we'll create the instruct element which determines how instruction pages are presented, and how the
user navigates through them.

<instruct>

/ nextlabel = "Continue"

/ lastlabel = "Continue"

/ prevkey = (0)

Page 26

/ inputdevice = mouse

/ windowsize = (90%, 90%)

/ screencolor = (0,0,0)

/ fontstyle = ("Arial", 3%)

/ txcolor = (255, 255, 255)

</instruct>

The inputdevice attribute specifies that users can navigate through the instructions by clicking the mouse.
The nextlabel and lastlabel specifies the text label for the navigation button that advances to the next page, or
that advances past the last page. By setting prevkey to "0", we ensure that users can not navigate
backwards through the pages. Finally, we've defined look and feel of instruction pages using the screencolor,
fontstyle, and windowsize commands.

Creating Text Stimuli Creating Trials

Page 27

Creating Trials
The IAT task requires that we create trial elements that present the stimuli representing the target and
attribute categories and gather classification responses to those stimuli. There are six types of trials used in
this task depending on which category of stimulus is presented and which response key is assigned as the
correct classification of the category.

First, let's define trials involving good words:

<trial attributeA>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = attributeA]

/ posttrialpause = 250

</trial>

The trial element's name is attributeA, which is also the name of the text element containing the good
attribute words. The validresponse command indicates that participants may respond by pressing the "E" or
the "I" key on the keyboard. The "E" key is considered a correct response as specified by the
correctresponsecommand. The posttrialpause attribute specifies that after the response, Inquisit inserts a
250 ms pause before advancing to the next trial.

The definition of the other trial elements are the similar to attributeA , differing only in the type of stimulus
presented and the response that's considered correct.

Here's the definition of trials with bad words where "I" is a correct response:

<trial attributeB>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = attributeB]

/ posttrialpause = 250

</trial>

Next come trials with insect pictures classified with the "E" key:

<trial targetBleft>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = targetB]

/ posttrialpause = 250

Page 28

</trial>

Trials with insect pictures classified with the "I" key:

<trial targetBright>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = targetB]

/ posttrialpause = 250

</trial>

Trials with flower pictures classified with the "E" key:

<trial targetAleft>

/ validresponse = ("E", "I")

/ correctresponse = ("E")

/ stimulusframes = [1 = targetA]

/ posttrialpause = 250

</trial>

Trials with flower pictures classified with the "I" key:

<trial targetAright>

/ validresponse = ("E", "I")

/ correctresponse = ("I")

/ stimulusframes = [1 = targetA]

/ posttrialpause = 250

</trial>

The trials above capture the different combinations of stimulus category and correct response in the IAT. Our
script will define one additional trial used to present task instructions to participants. This trial is defined as
follows:

<trial instructions>

/ stimulustimes = [1=instructions, spacebar]

/ correctresponse = (" ")

Page 29

/ errormessage = false

/ recorddata = false

</trial>

The stimulustimes attribute specifies that the trial presents two text stimuli, one called "instructions" which
contains the IAT task instructions, and another called "spacebar" which informs the participant they can
press the spacebar to advance to the next trial. The correctresponse attribute indicates that pressing the
spacebar key is the only correct response, and since the trial contains no validresponse definition, the
spacebar is the only valid response as well. No error feedback is presented on this trial. Since the trial does
not gather any data of interest, we've set recorddata to false so that the data for this trial (e.g., response,
latency, stimuli, etc.) are not recorded to the data file. This helps us keep our data files concise and clean,
and it saves us the trouble of having to filter out this data later.

Creating Instructions Creating Blocks

Page 30

Creating Blocks
Next we'll define the different kinds of blocks of trials used in the IAT. Blocks represent sequences of trials
that can be in random or predetermined order. For this experiment, 11 block elements will be defined, 7 for
practice at the IAT task, 2 for IAT data collection, and 2 for presenting task instructions.

First, let's define the practice block element for classification of the attribute categories, good and bad.

<block attributepractice>

/ bgstim = (attributeAleft, attributeBright)

/ trials = [1=instructions;2-21 = noreplace(attributeA, attributeB)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

This block element is named "attributepractice". The trials attribute specifies that the block runs 1 instruction
trial followed by 20 trials randomly selected without replacement from the two trial types "attributeA" and
"attributeB", which present good and bad words respectively. The selection algorithm guarantees that both
trial types will be run 10 time each. The bgstim attribute specifies that the "attributeA" and "attributeB"
category labels are presented on the screen as background stimuli to remind participants how the response
keys map to the categories. The errormessage attribute presents the stimulus named "error" (our big red X)
for 200 ms whenever subjects respond incorrectly. The responsemode for the block is set to correct, which
means participants must give the correct response to advance to the next trial, even if their initial resposne
was incorrect. Finally, recorddata is set to false so that our data file isn't cluttered up with practice data from
this block.

The rest of the blocks have a similar pattern. Next, lets define the practice blocks used for target categories.
There are two such blocks for the two possible key assignments. Here is the practice block on which insects
are classified with the right key and flowers with the left:

<block targetcompatiblepractice>

/ bgstim = (targetAleft, targetBright)

/ trials = [1=instructions;2-21 = noreplace(targetAleft,
targetBright)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

Now, lets define a practice block on which insects are classified with the left key and flowers with the right:

Page 31

<block targetincompatiblepractice>

/ bgstim = (targetAright, targetBleft)

/ trials = [1=instructions;2-21 = noreplace(targetAright,
targetBleft)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

Next, lets define the practice blocks used after the key assignments for the target categories are switched.
First, we'll define the block on which insects are classified with the left key and flowers with the right:

<block targetincompatiblepracticeswitch>

/ bgstim = (targetAleft, targetBright)

/ trials = [1=instructions;2-41 = noreplace(targetAleft,
targetBright)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

Next we'll define the opposite key assignments:

<block targetincompatiblepracticeswitch>

/ bgstim = (targetAright, targetBleft)

/ trials = [1=instructions;2-41 = noreplace(targetAright,
targetBleft)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

Notice that there are 40 practice trials in these blocks rather than 20. The extra trials are included to help

Page 32

subjects unlearn the key assignments from the previous blocks.

We've defined two blocks for the initial key assignment, and two more blocks or the key assignment after the
switch. Since each subject can only have one initial assignment and one switched assignment, each subject
will only encounter one of them depending on which key assignment condition they are assigned to.

The practice blocks above handle single category judgements, so we still need to define the practice for the
mixed judgment blocks in which participants have to classify both attribute and target stimuli:

<block compatiblepractice>

/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright,
orright, attributeBrightmixed)

/ trials = [1=instructions;

 3,5,7,9,11,13,15,17,19,21= noreplace(targetAleft, targetBright);

 2,4,6,8,10,12,14,16,18,20 = noreplace(attributeA, attributeB)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

<block incompatiblepractice>

/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright,
orright, attributeBrightmixed)

/ trials = [1=instructions;

 3,5,7,9,11,13,15,17,19,21 = noreplace(targetBleft, targetAright);

 2,4,6,8,10,12,14,16,18,20 = noreplace(attributeA, attributeB)]

/ errormessage = true(error,200)

/ responsemode = correct

/ recorddata = false

</block>

These are similar to previous practice blocks. One notable difference is that the bgstim attribute presents
both target and attribute labels. Another difference is how the sequence of trials are defined. On odd
numbered trials (excluding the instructions trial), the block runs a randomly selected target classification trial.
On even numbered trials, a randomly selected attribute trial is run. This ensures that the participant does not
encounter a run of trials in which they are making only flower/insect judgments or only bad/good judgments.

That does it for practice blocks. Lets define the test blocks. There are two such blocks, one using a
"compatible" (i.e., stereotype consistent) pairing of target and attribute categories, and the other using the

Page 33

incompatible pairing:

<block compatibletest>

/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright,
orright, attributeBrightmixed)

/ trials = [

 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40 =
noreplace(targetAleft, targetBright);

 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39 =
noreplace(attributeA, attributeB)]

/ errormessage = true(error,200)

/ responsemode = correct

</block>

<block incompatibletest>

/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright,
orright, attributeBrightmixed)

/ trials = [

 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40 =
noreplace(targetBleft, targetAright);

 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39 =
noreplace(attributeA, attributeB)]

/ errormessage = true(error,200)

/ responsemode = correct

</block>

These blocks differ from the practice blocks in that they run 40 trials rather than 20, they do not have
recorddata set to false, and they include no instruction trials. Instructions are instead displayed in a special
instructions block. The reason for presenting the instruction trial in a separate block is because our summary
page that we created earlier reports the average response latency score for the entire test block. If the test
block included an instruction trial, the latency on this trial would also be included in the average. Since we
want to report the average latency for test trials only and not instruction trials, we pulled the instruction trial
out of the test block and put it into its own instruction block. The instruction blocks are defined below:

<block compatibletestinstructions>

/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright,
orright, attributeBrightmixed)

Page 34

/ trials = [1=instructions]

/ recorddata = false

</block>

<block incompatibletestinstructions>

/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright,
orright, attributeBrightmixed)

/ trials = [1=instructions]

/ recorddata = false

</block>

That concludes our block definitions.

Creating Trials Creating an Expt

Page 35

Creating an Expt
The expt element defines the sequence in which blocks are run. For our picture IAT, the expt element is
defined as follows:

<expt>

/ blocks = [1=attributepractice; 2=block2; 3=block3; 4=block4;
5=block5; 6=block6; 7=block7; 8=block8; 9=block9]

/ postinstructions = (summary)

</expt>

The expt element is pretty simple. The blocks attribute specifies a sequence of 9 blocks. The first block is
"attributepractice" block in which subjects practice classifying the good and bad word stimuli. Blocks 2
through 9 are set to between-subject variables named "block2", "block3", "block4", "block5", etc. When the
script is run, these variables will be set to the names of real blocks depending on the subject number that is
assigned. By using between-subject variables, the script counterbalances the order in which the test blocks
are run across subjects so that half our subjects run the compatible pairing first, and the other half runs the
incompatible pairing.

The between-subject variables are defined as follows:

<variables>

/ group = (1 of 2) (block2=targetcompatiblepractice;
block3=compatiblepractice; block4=compatibletestinstructions;
block5=compatibletest; block6=targetincompatiblepractice;
block7=incompatiblepractice; block8=incompatibletestinstructions;
block9=incompatibletest]

/ group = (2 of 2) (block2=targetincompatiblepractice;
block3=incompatiblepractice; block4=incompatibletestinstructions;
block5=incompatibletest; block6=targetcompatiblepractice;
block7=compatiblepractice; block8=compatibletestinstructions;
block9=compatibletest]

</variables>

The variables element defines between-subject variables based on the subject number that was entered when
the experiment is run. The first group attribute specifies the variable values for odd numbered subjects (i.e.,
the first of every two subjects). For odd-numbered subjects, block2 is targetcompatiblepractice, block3 is
compatiblepractice, block4 is compatibletestinstructions, and so on. Thus, odd numbered subjects perform
classifications with the compatible pairing first. For even-numbered subjects, the incompatible pairing comes
first.

By default, Inquisit will save a lot of data to the data file, much of which isn't relevant to the IAT. Although
there's not much harm in having this data around, we can save ourselves some time and disk space by telling
Inquisit to save just the data we care about. We do this in the data element as follows:

<data>

/ columns = (date time subject blockcode blocknum trialcode trialnum
response correct latency stimulusnumber1 stimulusitem1
stimulusnumber2 stimulusitem2)

</data>

Page 36

The columns attribute lists the data columns to save. All other data columns will not be saved.

Finally, we'll specify some default settings that apply to this script using the defaults element.

<defaults>

/ screencolor = (0,0,0)

/ txbgcolor = (0,0,0)

/ txcolor = (255, 255, 255)

/ fontstyle = ("Arial", 5%)

</defaults>

The screencolor attribute sets the color of the screen throughout the experiment to black. The txcolor and
txbgcolor attributes specify the foreground and background colors for text stimuli as white text on a black
background. The fontstyle attribute specifies that all text elements should be presented in Arial font at 5% of
the screen height unless otherwise specified.

Our Picture IAT is now complete. You can run the experiment by selecting the "Run" command on the
"Experiment" menu.

Creating Blocks Back to Overview

Page 37

Tutorial: Simple Implicit Attitude Task
Download script for this tutorial.

This tutorial builds a simplified Implicit Attitude Task (IAT). A number of standard IAT procedures have been
been omitted for the sake of illustrating basic Inquisit programming concepts. The script produced by this
tutorial is provided for instructional purposes only and should not be used for research. To learn how to create
an up-to-date IAT, please see the IAT with Custom Categories and Items Tutorial or the Picture IAT Tutorial.

On the following pages, Inquisit commands are printed in blue, and comments are printed in black:

Before you Begin
1. Download and install Inquisit Lab

Steps
1. Creating Text Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

Creating Text Stimuli

Page 38

http://www.millisecond.com/download/library/tutorials/
http://www.millisecond.com/download/

Creating Text Stimuli
The first step in building an experiment is to define all of the stimuli. Stimuli include text or pictures to be
shown on a given trial, background text that remains on the screen throughout a block of trials, or a feedback
text shown to the subject to indicate when to respond and whether their response was correct or incorrect.

First, let's define the pleasant words:

<text pleasant>

/ items = pleasant

</text>

This text element defines a set of text stimuli named "pleasant" that has one attribute, items. The items
attribute indicates where the text items are defined. In this case, they are defined in an item element named
"pleasant" somewhere else in the script (more on this below). There are a number of other attributes that
could be specified for our text stimulus, including attributes for controling the color, background color, screen
position, and font. However, we'll just use the defaults of black text on a white background presented in the
middle of the screen.

Now, lets define the items for this text element:

<item pleasant>

/ 1 = " HONOR "

/ 2 = " LUCKY "

/ 3 = " DIAMOND "

/ 4 = " LOYAL "

/ 5 = " FREEDOM "

/ 6 = " RAINBOW "

/ 7 = " LOVE "

/ 8 = " HONEST "

/ 9 = " PEACE "

/10 = " HEAVEN "

</item>

This item element is named "pleasant", which matches the name specified in the items attribute of the text
element above. The item set consists of ten pleasant words. Note that the words are padded with spaces so
that they are all of equal length when presented in a fixed width font.

Now, lets define the rest of the stimulus categories. First, we'll define the unpleasant words:

<text unpleasant>

/ items = unpleasant

Page 39

</text>

and the unpleasant items.

<item unpleasant>

/ 1 = " EVIL "

/ 2 = " CANCER "

/ 3 = " SICKNESS "

/ 4 = " DISASTER "

/ 5 = " POVERTY "

/ 6 = " VOMIT "

/ 7 = " BOMB "

/ 8 = " ROTTEN "

/ 9 = " ABUSE "

/10 = " MURDER "

</item>

Next, we'll define the flowers:

<text flower>

/ items = flowers

</text>

and the flower items.

<item flowers>

/ 1 = " ROSE "

/ 2 = " BEGONIA "

/ 3 = " VIOLET "

/ 4 = " DAISY "

/ 5 = " GERANIUM "

/ 6 = " TULIP "

/ 7 = " CARNATION "

/ 8 = " DAFFODIL "

/ 9 = " LILAC "

Page 40

/ 10= " PANSY "

</item>

Finally, we'll define the insects:

<text insect>

/ items = insects

</text>

and insect items.

<item insects>

/ 1 = " ANT "

/ 2 = " LOCUST "

/ 3 = " BEE "

/ 4 = " HORNET "

/ 5 = " WASP "

/ 6 = " SPIDER "

/ 7 = " CENTIPEDE "

/ 8 = " COCKROACH "

/ 9 = " BEDBUG "

/ 10= " LADYBUG "

</item>

When creating an IAT, it's a good idea to include instruction text that reminds participants how to respond to
the various stimulus categories. We can do this by presenting text on the screen that are shown in the
background throughout a block of trials. So, let's create the instruction text stimuli that remind the subject to
press the "a' key for unpleasant and the "5' key for pleasant.

<text pleasantreminder>

/ items = ("Press 'a' for pleasant")

/ position = (75, 25)

/ txcolor = (0, 0, 255)

</text>

The reminder stimulus is a bit different than the previous stimuli. First, rather than defining the items in a
separate element, we've simply listed the single item directly in the attribute. This inline syntax is a
convenient way to define small item sets for things like instrutions, focus stimuli, and masks. Also, the
position attribute specifies that the text should be displayed on the upper right of the screen rather than in the
default center position. Specifically, the stimulus is positioned 75% of way across the screen (from left to
right), and 25% percent of the way down the screen (from top to bottom). Finally,the txcolor attribute specifies

Page 41

that the text should be blue rather than the default color black. Colors in Inquisit are specified as a mix of red,
green, and blue components; the txcolor attribute specifies 0 intensity for red and green components, and the
maximum intensity 255 for the blue component, producing a nice blue color.

Now, lets define the unpleasant reminder, which will be displayed in the upper left quadrant of the screen.

<text unpleasantreminder>

/ items = ("Press '5' for unpleasant")

/ position = (25, 25)

/ txcolor = (0, 0, 255)

</text>

and the rest of the reminders:

<text flowerleft>

/ items = ("Press 'a' for flowers")

/ position = (25, 25)

/ txcolor = (0, 0, 255)

</text>

<text flowerright>

/ items = ("Press '5' for flowers")

/ position = (75, 25)

/ txcolor = (0, 0, 255)

</text>

<text insectleft>

/ items = ("Press 'a' for insects")

/ position = (25, 25)

/ txcolor = (0, 0, 255)

</text>

<text insectright>

/ items = ("Press '5' for insects")

/ position = (75, 25)

/ txcolor = (0, 0, 255)

</text>

Page 42

<text pleasant_flower>

/ items = ("Press '5' for pleasant or flowers")

/ position = (75, 25)

/ txcolor = (0, 0, 255)

</text>

<text pleasant_insect>

/ items = ("Press '5' for pleasant or insects")

/ position = (75, 25)

/ txcolor = (0, 0, 255)

</text>

<text unpleasant_flower>

/ items = ("Press 'a' for unpleasant or flower")

/ position = (25, 25)

/ txcolor = (0, 0, 255)

</text>

<text unpleasant_insect>

/ items = ("Press 'a' for unpleasant or insect")

/ position = (25, 25)

/ txcolor = (0, 0, 255)

</text>

Finally, lets define an error message stimulus to show subjects whenever they incorrectly classify a target
stimulus:

<text errormessage>

/ items = (" ERROR ")

/ txcolor = (255, 0, 0)

</text>

The "errormessage" text element uses the txcolor attribute to set the red component to 255 and the green
and blue components to 0, producing a rich red color.

Page 43

Overview Creating Instructions

Page 44

Creating Instructions
Now lets define a set of instruction pages that inform the subject how to perform the task. Defining the
instruction pages is easy using the page element. First, we'll define a simple welcome page.

 <page intro>

 ^^^^^^^ Implicit Association Test

 ^^Welcome and thank you for participating.

</page>

Note that the "^" character is used to force a line break. Otherwise, lines of text are word-wrapped. Now we'll
define the rest of the instruction pages:

<page up>

The tasks that you will be doing in this experiment involve CATEGORY
JUDGMENT. On each trial, a stimulus will be displayed, and you must
assign it to one of two categories. You should respond AS RAPIDLY AS
POSSIBLE in categorizing each stimulus, but don't respond so fast
that you make many errors. (Occasional errors are okay.)^^

The two categories that you are to distinguish are:^^

UNPLEASANT vs. PLEASANT words.^^

Press the "a' key if the stimulus is an UNPLEASANT word.^^

But press "5' key if the stimulus is a PLEASANT word.^^

</page>

<page if>

The two categories that you are to distinguish are:^^

INSECTS vs. FLOWERS.^^

Press the "a' key if the stimulus is an INSECT.^^

But press "5' key if the stimulus is a FLOWER.^^

</page>

<page fi>

Page 45

The two categories that you are to distinguish are:^^

FLOWERS vs. INSECTS.^^

Press the "a' key if the stimulus is a FLOWER.^^

But press "5' key if the stimulus is an INSECT.^^

</page>

<page compatible>

The four categories that you are to distinguish are:^^

UNPLEASANT vs. PLEASANT words^

or^

INSECTS vs. FLOWERS.^^

Press the "a' key if the stimulus is^

an UNPLEASANT word or an INSECT.^^

But press "5' key if the stimulus is^

a PLEASANT word or a FLOWER.^^

</page>

<page incompatible>

The four categories that you are to distinguish are:^^

UNPLEASANT vs. PLEASANT words^

or^

FLOWERS vs. INSECTS.^^

Press the "a' key if the stimulus is^

an UNPLEASANT word or a FLOWER.^^

But press "5' key if the stimulus is^

a PLEASANT word or an INSECT.^^

</page>

Page 46

<page end>

The Implicit Association Test is now concluded.

If you have any questions or reactions to the

experiment, please discuss them with the experimenter.

</page>

Finally, we'll specify how participants can navigate through the instruction pages using the instruct element.
A script should have only one such element.

<instruct>

/ nextkey = ("5")

/ prevkey = ("a")

</instruct>

The nextkey attribute indicates that participants must press the "5" key to advance to the next page, and the
prevkey attribute specifies pressing the "a" key goes back to the previous key.

Creating Text Stimuli Creating Trials

Page 47

Creating Trials
The next step is to define the different kinds of trials that will be used in the IAT task. Trial elements control
which stimuli are presented and how the subject may respond to those stimuli. There are six types of trials
used in this task depending on which semantic category of stimulus is presented and which response key is
assigned as the correct classification of the category.

First, let's define trials involving pleasant words, which are always assigned to the right response key.

<trial pleasant>

/ stimulusframes = [1=pleasant]

/ validresponse = ("a", "5")

/ correctresponse = ("5")

</trial>

The trial element's name is pleasant . On each line of data in the data file corresponding to this type of trial,
this trial name is written.

The stimulusframes attribute defines the stimulus presentation sequence of the trial. The entire presentation
sequence will consist of as many frames as are specified in the frames attribute (only 1 in this case). A
pleasant word is presented on the first frame, after which Inquisit begins waiting for (and timing) the subject's
response.

The validresponse attribute indicates that the subject may respond by pressing either the "a' or the "5' key,
after which Inquisit will advance to the next trial. The correctresponse attribute indicates that only the "5' key
is considered a correct response on this type of trial.

The definition of the other trial elements are the similar to pleasant , differing only in the type of stimulus
presented and the response that's considered correct.

Here's the definition of trials with unpleasant words where "a" is a correct response:

<trial unpleasant>

/ validresponse = ("a", "5")

/ correctresponse = ("a")

/ stimulusframes = [1=unpleasant]

</trial>

Next come trials with insect names classified with the "5" key:

<trial insright>

/ validresponse = ("a", "5")

/ correctresponse = ("5")

/ stimulusframes = [1=insect]

</trial>

Page 48

Trials with insect names classified with the "a" key:

<trial insleft>

/ validresponse = ("a", "5")

/ correctresponse = ("a")

/ stimulusframes = [1=insect]

</trial>

Trials with flower names classified with the "5" key:

<trial flowright>

/ validresponse = ("a", "5")

/ correctresponse = ("5")

/ stimulusframes = [1=flower]

</trial>

Trials with flower names classified with the "a" key:

<trial flowleft>

/ validresponse = ("a", "5")

/ correctresponse = ("a")

/ stimulusframes = [1=flower]

</trial>

The trials above capture the different combinations of stimulus category and correct response in the IAT.

Creating Instructions Creating Blocks

Page 49

Creating Blocks
The next step is to define the different kinds of blocks that will be used in the experiment. Blocks represent
sequences of trials that can be in random or fixed order. For this experiment, 5 block elements will be
defined, 3 for practice trials and 2 for data collection.

First, let's define the practice block element for classification of pleasant and unpleasant words.

<block up_practice>

/ trials = [1-20 = noreplace(pleasant, unpleasant)]

/ bgstim = (pleasantreminder, unpleasantreminder)

/ preinstructions = (up)

/ errormessage = (errormessage, 200)

/ blockfeedback = (latency, correct)

</block>

This block element is named "up_practice". The trials attribute specifies that the block runs 20 trials
randomly selected without replacement from the two trial types "pleasant" and "unpleasant". The selection
algorithm guarantees that both trial types will be run an equal number of times (10 time each). The bgstim
attribute specifies that the "pleasantreminder" and "unpleasantreminder" instruction text stimuli are presented
on the screen as background stimuli. The preinstructions attribute displays 3 pages of instructions ("intro1",
"intro2", and "intro3") before running the trials. The errormessage attribute presents the "errormessage"
stimulus for 200 ms whenever subjects respond incorrectly. Finally, the blockfeedback attribute specifies
that after the block is over, subjects will be shown their mean latency and percent correct for the block.

The rest of the blocks have a similar pattern. Next, lets define a practice block on which insects are classified
with the left key and flowers with the right:

<block if_practice>

/ trials = [1-20 = noreplace(insleft, flowright)]

/ bgstim = (insectleft, flowerright)

/ preinstructions = (if)

/ errormessage = (errormessage, 200)

/ blockfeedback = (latency, correct)

</block>

Now, lets define a practice block on which insects are classified with the right key and flowers with the left:

<block fi_practice>

/ trials = [1-20 = noreplace(insright, flowleft)]

Page 50

/ bgstim = (insectright, flowerleft)

/ preinstructions = (fi)

/ errormessage = (errormessage, 200)

/ blockfeedback = (latency, correct)

</block>

Next, lets define the "compatible" test block. Note that on test blocks we no longer dispay an error message
for incorrect responses:

<block compatible>

/ trials = [1-40 = noreplace(insleft, flowright, pleasant,
unpleasant)]

/ bgstim = (unpleasant_insect, pleasant_flower)

/ preinstructions = (compatible)

/ blockfeedback = (latency, correct)

</block>

Finally, lets define the "incompatible" block:

<block incompatible>

/ trials = [1-40 = noreplace(insright, flowleft, pleasant,
unpleasant)]

/ bgstim = (pleasant_insect, unpleasant_flower)

/ preinstructions = (incompatible)

/ blockfeedback = (latency, correct)

</block>

Creating Trials Creating an Expt

Page 51

Creating an Expt
The next step is to define an expt element that defines the flow of blocks in the experiment. The expt element
is defined as follows:

<expt>

/ preinstructions = (intro)

/ postinstructions = (end)

/ blocks = [1=up_practice; 2=block2; 3=block3; 4=block4; 5=block5]

</expt>

The expt element is simple. The preinstructions attribute begings the expt by showing subjects a page of
instructions, "intro". The postinstructions attribute specifies final instruction page named "end" to be
displayed at the conclusion of the experiment. The blocks attribute specifies a total of 5 blocks. The first
block is the "up_practice" block in which subjects practice classifying the pleasant and unpleasant stimuli.
Blocks 2 through 5 are set to between-subject variables named "block2", "block3", "block4", and "block5", all
of which are defined below. These between-subject variables allow the experiment to counterbalance the order
in which the test blocks are run across subjects.

Next, we'll define the between-subject variables used above:

<variables>

/ group = (1 of 2) (block2=fi_practice, block3=incompatible, block4=if_practice,
block5=compatible)

/ group = (2 of 2) (block2=if_practice, block3=compatible, block4=fi_practice,
block5=incompatible)

</variables>

The variables element defines between-subject variables based on the subject number that was entered when
the experiment is run. The first group attribute specifies the variable values for odd numbered subjects. For
odd-numbered subjects, block2 is fi_practice, block3 is incompatible, block4 is if_practice, and block5 is
compatible. For even-numbered subjects, block2 is if_practice, block3 is compatible, block4 is fi_practice,
and block5 is incompatible.

With that, the script is essentially complete. However, we'll do a little fine tuning by specifying some default
settings using the defaults element.

<defaults>

/ screencolor = (175, 175, 255)

/ fontstyle = ("Courier New", 14pt)

</defaults>

The screencolor attribute sets the color of the screen throughout the experiment to light blue. The fontstyle
attribute specifies that all stimulus and instruction text should be displayed in a 14pt Courier New font. You
can specify the font attribute using Inquisit's Font Wizard, avaiable from the Tools menu. The wizard allows
you to pick a font using the standard font dialog, and will spit the corresponding attribute definition into your
script.

Page 52

The experiment is now complete! You can run the experiment by selecting the "Run" command on the
"Experiment" menu.

Creating Blocks Back to Overview

Page 53

Tutorial: Subliminal Priming Task
Download script for this tutorial.

This tutorial explains how to build a simple subliminal priming experiment such as that described by Draine
and Greenwald (Journal of Experimental Psychology: General, 1998). On each trial, subjects are shown a
subliminal (masked) prime word followed immediately by a target word. Primes and targets are divided into
two definitional categories: pleasant (e.g., love) or unpleasant (e.g., death). Subjects are instructed to ignore
the primes and classify the targets as pleasant (by pressing the "5" key on the number pad) or unpleasant
(by pressing the "a" key). Each trial falls into one of four experimental conditions depending on the category
(pleasant or unpleasant) of prime and target presented:

1. pleasant prime with pleasant target (congruent)
2. pleasant prime with unpleasant target (incongruent)
3. unpleasant prime with pleasant target (incongruent)
4. unpleasant prime with unpleasant target (congruent)

Longer Reaction Times and/or higher error rates on trials in which the prime and target are incongruent
compared to the condition in which the prime and target are congruent, suggest the presence of subliminal
priming.

Before you Begin
1. Download and install Inquisit Lab

Steps
Creating Text Stimuli

Creating Instructions

Creating Trials

Creating Blocks

Creating an Experiment

Creating Text Stimuli

Page 54

http://www.millisecond.com/download/library/tutorials/
http://www.millisecond.com/download/

Creating Text Stimuli
The first step in building an experiment is to create the experimental stimuli and specify how they should be
presented. Stimuli will typically consist of text or pictures presented during a trial, instruction text that
remains on the screen throughout a block of trials, and feedback messages that indicate when to respond
and whether or not a response was correct.

First, let's create a text element that defines the pleasant prime words:

<text pleasantprime>

/ items = pleasant

</text>

The text element's name is "pleasantprime". The element could be named anything we wish, but it's a good
idea to picks a simple, descriptive name. It has a single attribute called "items" that specifies where the
actual items are located. In this case, we have specified that the items are located in an item element called
"pleasant" that we will create a bit later.

The text element allows us to define other attributes including color and screen lcoation. In this element, we
will use the default values. (The default color is black, and the default position is the center of the screen.)
Later, we'll demonstrate how to change these values.

In the example above, we defined pleasant prime stimuli. Next, we'll define pleasant target stimuli:

<text pleasanttarget>

/ items = pleasant

</text>

With the exception of it's name, this text element is identical to the pleasantprime element. Note that the
items attribute is set to the same item list (that we'll create in a moment) named "pleasant". This element will
use those same items as targets.

Now, lets define the items used by both the pleasantprime and pleasanttarget text elements:

<item pleasant>

/ 1 = " HONOR "

/ 2 = " LUCKY "

/ 3 = " DIAMOND "

/ 4 = " LOYAL "

/ 5 = " FREEDOM "

/ 6 = " RAINBOW "

/ 7 = " LOVE "

/ 8 = " HONEST "

Page 55

/ 9 = " PEACE "

/10 = " HEAVEN "

</item>

Pretty simple isn't it? Notice the opening and closing lines: <item pleasant> and </item> The name of this
element is pleasant. Notice that there are 8 spaces on either side of the items (words). This is done to center
the words in the presentation box during a given trial.

Now, lets define the unpleasant primes and targets:

<text unpleasantprime>

/ items = unpleasant

</text>

<text unpleasanttarget>

/ items = unpleasant

</text>

These text elements similar to the previous ones, except that they use "unpleasant" items. Let's create the
unpleasant items:

<item unpleasant>

/ 1 = " EVIL "

/ 2 = " CANCER "

/ 3 = " SICKNESS "

/ 4 = " DISASTER "

/ 5 = " POVERTY "

/ 6 = " VOMIT "

/ 7 = " BOMB "

/ 8 = " ROTTEN "

/ 9 = " ABUSE "

/10 = " MURDER "

</item>

Let's review what we've covered so far.

1. Inquisit uses a set of instructions to control the flow of an experiment called a script.
2. A script consists of elements.
3. Each element has its own name by which other elements can refer to it.
4. Elements have attributes that control specific properties of the element (e.g. font size and color).
5. Some attributes of an element can refer to other elements in the script by name.

Page 56

We aren't done with the stimuli yet. We still need to define the forward and backward, the error messages,
and create background messages. Here is the text element that will serve as the forward masks of the
primes, called "forwardmask":

<text forwardmask>

/ items = (" KQHYTPDQFPBYL ", " PYLDQFBYTQKPH ")

</text>

This text element consists of two items, "KQHYTPDQFPBYL" and "PYLDQFBYTQKPH". Note that the items
in this case are defined directly inside the forwardmask text element. You can define items this way or by
using an items element as was done previously. A good rule of thumb is to use the items element for large
item sets, or for item sets that will be shared by multiple text elements (for example, the pleasant items were
used by both pleasantprime and pleasanttarget). For small item sets such as the two forward masks, or for
items sets that are only used by one text element, it is usually more convenient to define such items directly
inline.

Here is the text element that will define the stimuli that will serve as backward masks of the primes. Let's call
it "backwardmask". The backward mask is very similar to the forward mask:

<text backwardmask>

/ items = (" PYLDQFBYTQKPH ", " KQHYTPDQFPBYL ")

/ select = current (forwardmask)

</text>

Note the addition of the select attribute set to the current option. By default, the select attribute is set to
noreplace and items are selected without replacement on each trial. The current setting links the selection of
the backwardmask item on each to that of the forwardmask item. Thus, for trials on which both a forward and
backward mask are presented, if the first forward mask item is selected and presented on that trial, then the
first backward mask item will also be presented. If the second forward mask was selected and presented,
then the second backward mask will also be presented. Thus, each forward mask item has a complimentary
backward mask item that always appears in conjunction with it. By linking these two stimuli, the forward and
backward masks on a given trial will never be identical since the order of the two items is reversed.

Now, lets create stimuli (text) to be shown in the background throughout an entire block of trials. These
stimuli will serve as reminders to the subject to press the "a" key for unpleasant and the "5" key for pleasant.

<text pleasantreminder>

/ items = ("5 = pleasant")

/ position = (75, 25)

</text>

This stimulus is similar to the previous stimuli, except the position attribute is no longer set to the default
(center). Inquisit specifies screen position using a coordinates system ranging from 0 to 100 on both the
horizontal and vertical axes. The upper left corner of the screen is (0, 0), and the lower right corner of the
screen is (100, 100). The center of the screen is (50, 50). So, the coordinates of (75, 25) used above in
pleasantreminder will place the stimuli above and to the right of the center of the screen.

Now, lets define the unpleasant reminder, which will be displayed on the upper left region of the screen.

<text unpleasantreminder>

/ items = ("a = unpleasant")

Page 57

/ position = (25, 25)

</text>

Finally, lets define a stimulus to show subjects whenever they incorrectly classify a target stimulus:

<text errormessage>

/ items = (" ERROR ")

/ color = (255, 0, 0)

</text>

The errormessage text element uses the color attribute. The color attribute takes three integers between 0
and 255 that define the intensity of the red, green, blue components of the color respectively. The red
component is the maximum intensity, 255, whereas the green and blue components are 0. This combination
produces a rich red color.

Overview Creating Instructions

Page 58

Creating Instructions
Next, let's define the instruction pages. First, we'll create an introduction page:

<page intro1>

The tasks that you will be doing in this experiment involve CATEGORY
JUDGMENT.

On each trial, a stimulus will be displayed, and you must assign it
to one of

two categories. You should respond AS RAPIDLY AS POSSIBLE in
categorizing each stimulus,

but don't respond so fast that you make many errors. (Occasional
errors are okay.)

^^

The two categories that you are to distinguish are:

^^

UNPLEASANT vs. PLEASANT words.

^^

Press the "a" key if the stimulus is an UNPLEASANT word.

^^

But press "5" key if the stimulus is a PLEASANT word.

^^

</page>

The page element doesn't have any attributes, but simply contains the content of the page. The special
character "^" will force a line break when the page is displayed on the screen. Otherwise, the instructions are
word wrapped inside the page area.

Now let's define the rest of the pages in the script:

<page intro2>

Just before each word that you are to categorize you will see one or
more words and letter strings briefly flashed.^^

It is your task to IGNORE these briefly flashed stimuli. Respond
only to the last, clearly visible word shown on each trial.

</page>

<page intro3>

Page 59

When you press the "5' key, you will see a stimulus to which you
should respond.^^

As a reminder of the instructions for responding:^^

Press the "a" key if the stimulus is an UNPLEASANT word.^^

Press "5' key if the stimulus is a PLEASANT word.^^

</page>

<page ready>

When you press the "5" key, a new block of trials at the same task
as the last block will start.^^

Be ready for the first stimulus when you press the key.

</page>

<page end>

The experiment is now concluded. If you have any questions or
reactions to the experiment, please discuss them with the
experimenter.

</page>

Finally, we'll define an instruct element that specifies how subjects can navigate from page to page. A script
should have only one such element.

<instruct>

/ nextkey = ("5")

/ prevkey = ("a")

</instruct>

The nextkey attribute specifies that subjects can press the "5" key to advance to the next instruction page,
and "a" key to go back to a previous page.

Creating Text Stimuli Creating Trials

Page 60

Creating Trials
The next step is to define the different kinds of trials that will be used in the experiment. The types of trials
you define will correspond to the different conditions of the experiment. This experiment has four conditions,
one condition for each of the four possible combinations of prime and target categories.

First, let's define trials involving pleasant primes and pleasant targets by creating the following trial element.

<trial pp>

/ pretrialpause = 300

/ validresponse = ("a", "5")

/ correctresponse = ("5")

/ stimulusframes = [1=forwardmask; 10=pleasantprime;
13=backwardmask; 14=pleasanttarget]

/ posttrialpause = 100

</trial>

The trial element is called "pp", which is short for "pleasant pleasant" because the trial presents both a
pleasant prime and pleasant target.

The posttrialpause attribute tells Inquisit to pause 300 milliseconds before each trial is executed.

The validresponse attribute specifies which keys a subject can press to register their response. Remember
we already talked about these responses when the instructions were created. When the participant responds
by pressing the "a" or the "5" key, Inquisit will advance to the next trial.

The correctresponse attribute tells Inquisit which responses are considered correct. In this trial, "5" is correct.

the stimulusframes attribute is slightly more technical because it is closely connected to how digital monitors
operate. Computer monitors repaint the screen from top to bottom according to a fixed interval called a
"frame" (a.k.a., vertical retrace interval). Most standard monitors repaint the screen about every 10 to 17
milliseconds. To determine the frequency at which your monitor repaints the screen, select the "Check
Hardware" command from Inquisit's Tools menu. Inquisit will run at any frequency. If you decide you would
like to change the retrace frequency of your video system, you should check the manufacturer's
documentation for the specifics on your monitor. Typically, the frame rate can be controlled from Display
settings within Windows.

Thus, the stimulus presentation sequence is defined in terms of discrete frames rather than times. The entire
presentation sequence consists of as many frames as are specified in the frames attribute (14 in this case).
So, a forwardmask is presented at the onset of the first frame of the trial. This forwardmask remains on the
screen until it is overwritten by a prime stimulus on the 10th frame. The prime stimulus remains on the screen
for 3 frames (50 ms on a 60 hz monitor), before it is overwritten by a backward mask on the 13th frame.
Finally, a target is presented on the 14th frame and remains on the screen until the subject responds.

So you see, you have to do a little calculating here to decide the time each frame is to be presented. 3
frames on a 60 hz monitor is the equivalent of 50 ms because:
3 (frames) x 16.7 (ms) = 50.1 (ms).

Finall, the posttrialpause atribute tells Inquisit to wait 100 ms after this trial before advancing to the next trial.

Remember, this was just one type of trial. We need to define 3 more trial types. The rest of the trials will be
very similar to the first. Many experiments change only minor details from trial to trial; a word list, an order of
presentation, response variables, etc. Once you have the first trial coded, you are ready to make the rest. It's
very easy to do that in Inquisit. You can copy and paste your code for trial one and then just change the

Page 61

minor variables. Let's see what the other trial codes look like.

<trial pu>

/ pretrialpause = 300

/ validresponse = ("a", "5")

/ correctresponse = ("a")

/ stimulusframes = [1=forwardmask; 10=pleasantprime;
13=backwardmask; 14=unpleasanttarget]

/ posttrialpause = 100

</trial>

<trial up>

/ pretrialpause = 300

/ validresponse = ("a", "5")

/ correctresponse = ("5")

/ stimulusframes = [1=forwardmask; 10=unpleasantprime;
13=backwardmask; 14=pleasanttarget]

/ posttrialpause = 100

</trial>

<trial uu>

/ pretrialpause = 300

/ validresponse = ("a", "5")

/ correctresponse = ("a")

/ stimulusframes = [1=forwardmask; 10=unpleasantprime;
13=backwardmask; 14=unpleasanttarget]

/ posttrialpause = 100

</trial>

The three trials above differ from the original only by which stimuli they present and which response is
considered correct. Together, the four trials capture the four combinations of pleasant and unpleasant prime
and target stimuli.

Page 62

Creating Instructions Creating Blocks

Page 63

Creating Blocks
The next step is to define the different kinds of blocks that will be used in the experiment. For this
experiment, two block elements will be defined, one for practice trials and the other for data collection.

First, let's define the practice block element.

<block practice>

/ bgstim = (pleasantreminder, unpleasantreminder)

/ preinstructions = (intro1, intro2, intro3)

/ trials = [1-40 = noreplace(pp, pu, up, uu)]

/ errormessage = (errormessage, 200)

/ blockfeedback = (latency, correct)

</block>

The block is called "practice".

The bgstim attribute tells Inquisit to keep the pleasantreminder and unpleasantreminder on the screen during
the block. Remember these stimulus elements were defined previously, we wanted to keep "a=unpleasant"
and "5=pleasant" on the screen during the trials in the upper left and right quadrants respectively.

The preinstructions attribute refers lists some of the instructions pages created in the previous section. This
command tells Inquisit to display the pages named intro1, intro2, and intro3 at the beginning of the block.

The trials attribute defines trials (40) for this practice block that are randomly without replacement selected
from the four trial types: pp, pu, up, uu. This guarantees that each trial type will be presented 10 times.

The errormessage attribute indicates that when the participant responds incorrectly in this practice block, the
errormessage text stimulus (previously defined) will be displayed for 200 ms. Giving feedback during a
practice trial is a good idea because you generally want the participant to learn the right way to perform their
task. As you'll see, we remove this feedback in the data collection blocks.

The blockfeedback attribute specifies that after the block is over, subjects will be shown their mean latency
and percent correct.

Now, lets define a data collection block.

<block data>

/ screencolor = (175, 175, 255)

/ bgstim = (pleasantreminder, unpleasantreminder)

/ preinstructions = (ready)

/ trials = [1-40 = random(pp, pu, up, uu)]

/ blockfeedback = (latency, correct)

</block>

This element is just like the practice element except that the participant is no longer given the feedback
because we removed the errormessage attribute. Also, the block begins with a different instruction page

Page 64

called "ready".

Creating Trials Creating an Expt

Page 65

Creating an Expt
Next, we'll need to define an expt element that specifies which blocks to run.

<expt>

/ blocks = [1 = practice; 2-5 = data]

/ postinstructions = (end)

</expt>

The expt element runs a total of 5 blocks. The first block is "practice", and the next for blocks are "data'.
After all the blocks have been run, a single page of instructions called end is displayed.

Finally, we'll want to set the default font and screen color for the experiment using the defaults element:

<defaults>

/ fontstyle = ("Courier New", 14pt)

/ screencolor = (150, 150, 150)

</defaults>

The fontstyle attribute sets the default font for all text stimuli and instruction pages to 14pt Courier New. You
can use Inquisit's Font Wizard to generate the font selection for you. To use the Font Wizard, place your
cursor at the location in the script where you wish the font attribute to appear, then select the Font Wizard
command from the Tools menu. A standard font dialog will appear, allowing you to select the font of your
choice. The wizard will then inject the corresponding attribute definition into you script.

The screencolor attribute works just like the txcolor attribute we configured earlier. In this case, the red,
green, and blue components are all set to 150, making the screen grey.

The experiment is complete!

Creating Blocks Overview

Page 66

Tutorial: Covert Attention Task
Download script for this tutorial.

This tutorial builds a covert attention task. The task measures the effect of an unattended cue on spatial
position judgments. Subjects perform the task by indicating whether a critical stimulus is presented on the
left or right side of the screen by pressing the 'a' or 's' key on the keyboard respectively. Subjects are
instructed to fixate their gaze on the center of the screen while performing the task, where an arrow is
presented on each trial. On 80% of the trials, the arrow points in the direction where the critical stimulus is
presented (compatible). On the remaining 20% of the trials, the arrow points in the opposite direction
(incompatible). Covert attention to the arrow is measured by comparing the average response latency of the
compatible and incompatible trials. Shorter mean latencies on compatible as compared to incompatible trials
indicates that subjects are influenced by the unattended arrow stimulus.

Before you Begin
1. Download and install Inquisit Lab

Steps
1. Creating Text Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

Creating Text Stimuli

Page 67

http://www.millisecond.com/download/library/tutorials/
http://www.millisecond.com/download/

Creating Text and Picture Stimuli
The first step in building an experiment is to define all of the stimuli. Stimuli include text or pictures to be
shown on a given trial, background text that remains on the screen throughout a block of trials, or a feedback
text shown to the subject to indicate when to respond and whether their response was correct or incorrect.

Inquisit allows you to specify global default settings for stimuli and other parts of the experiment using the
<defaults> element. For this script, we will set the default font for all text stimuli that we present, and we'll
also set the background color for the screen to black.

<defaults>

/ screencolor = (0, 0, 0)

/ fontstyle = ("Arial", 20pt)

</defaults>

Now, let's create the arrow stimuli to be presented at the fixation point in the center of the screen:

<picture leftarrow>

/ items =
("http://www.millisecond.com/download/library/covertattention/leftar
row.jpg")

</picture>

<picture rightarrow>

/ items =
("http://www.millisecond.com/download/library/covertattention/righta
rrow.jpg")

</picture>

That was pretty easy. We simply created two picture stimuli called "leftarrow" and "rightarrow". Both stimuli
consist of a single item picture item contained in the picture files "rightarrow.jpg" and "lefttarrow.jpg"
respectively. In this case, the files are downloaded from http://www.millisecond.com/samples/covertattention,
but typically you would keep the files in the same folder as the script. By default, Inquisit presents the
pictures in the center of the screen.

Now, let's define a text stimulus to serve as the fixation point itself.

<text fixation>

/ items = ("+")

Page 68

http://www.millisecond.com/samples/covertattention,

/ color = (255, 255, 255)

/ txbgcolor = (0,0,0)

/ fontstyle = ("Arial", 30pt)

/ erase = false

</text>

The text is called "fixation" and it consists of a single item, "+". The foreground color is white, with the red,
green, and blue values set to the maximum value of 255. You can use Inquisit's Color Wizard available on the
Tools menu to get the red, green, and blue values for any color. The background color is black, with red,
green, and blue values set to the minimum value of 0. The font is Arial. You can select a font using Inquisit's
Font Wizard, also available on the Tools menu. Finally, the erase command indicates that the fixation point
should not be erased.

Now, let's define text stimuli to be presented just below the fixation point that will serve as instruction
reminders.

<text instructleft>

/ items = ("Press A if the brightened box is on the left.")

/ position = (50, 60)

/ color = (255, 255, 255)

/ txbgcolor = (0,0,0)

</text>

<text instructright>

/ items = ("Press S if the brightened box is on the right.")

/ position = (50, 65)

/ color = (255, 255, 255)

/ txbgcolor = (0,0,0)

</text>

The instruction stimuli use the position command to present the stimuli just below the fixation point. Position
is specified in terms of x and y coordinates. The unit of measurement is percentage, with 0 = top/left, 50 =
center, and 100 = bottom right. The instruction reminders are presented horizontally centered and vertically
10 percentage points below center.

Now, let's define the target pictures. We will create four target stimuli, each of which presents a picture of a
light yellow rectangle in one of the four corners of the screen.

Page 69

<picture toplefttarget>

/ items =
("http://www.millisecond.com/download/library/covertattention/target
rectangle.jpg")

/ position = (0, 0)

/ valign = top

/ halign = left

</picture>

<picture bottomlefttarget>

/ items =
("http://www.millisecond.com/download/library/covertattention/target
rectangle.jpg")

/ position = (0, 100)

/ valign = bottom

/ halign = left

</picture>

<picture toprighttarget>

/ items =
("http://www.millisecond.com/download/library/covertattention/target
rectangle.jpg")

/ position = (100, 0)

/ valign = top

/ halign = right

</picture>

<picture bottomrighttarget>

/ items =
("http://www.millisecond.com/download/library/covertattention/target
rectangle.jpg")

/ position = (100, 100)

/ valign = bottom

Page 70

/ halign = right

</picture>

Finally, we'll create the distractor stimuli. There are four distractors, each of which presents a dark yellow
rectangle in the four corners of the screen.

<picture topleft>

/ items =
("http://www.millisecond.com/download/library/covertattention/rectan
gle.jpg")

/ position = (0, 0)

/ valign = top

/ halign = left

</picture>

<picture bottomleft>

/ items =
("http://www.millisecond.com/download/library/covertattention/rectan
gle.jpg")

/ position = (0, 100)

/ valign = bottom

/ halign = left

</picture>

<picture topright>

/ items =
("http://www.millisecond.com/download/library/covertattention/rectan
gle.jpg")

/ position = (100, 0)

/ valign = top

/ halign = right

</picture>

Page 71

<picture bottomright>

/ items =
("http://www.millisecond.com/download/library/covertattention/rectan
gle.jpg")

/ position = (100, 100)

/ valign = bottom

/ halign = right

</picture>

Those are all the stimuli that we'll present in this script. Next, we'll create the instructions.

Overview Creating Instructions

Page 72

Creating Instructions
Now lets define how we will present instructions to subjects using the <instruct> element. A script should
have only one such element.

<instruct>

/ fontstyle = ("Arial", 18pt, true)

/ nextlabel = "Press the spacebar to continue"

/ lastlabel = "Press the spacebar to continue"

/ nextkey = (" ")

</instruct>

We've set the font to 18pt Arial bold. We've also defined the labels that will appear on the buttons that allow
subjects to proceed forward through our instruction pages. Finally, we've specified the spacebar key
(represented by the space character, " ") as the key to press to advance.

Once we've defined how instruction pages will be presented, we have to create the pages themselves. This
part is pretty easy. Note that the "^" character forces a line break. Otherwise, lines of text are word-wrapped.

<page inquisit>

^^The following sample illustrates how to create a covert attention
task using Inquisit.

</page>

<page intro1>

^Four boxes will be presented in each corner of the screen, and a
fixation point will appear in the center of the screen. Keep your
eyes focused on the fixation point throughout the entire experiment.

^^On each trial, the fixation point will change to an arrow pointing
left or right. On 80% of the trials, the arrow points to the side of
the screen on which one of the boxes will brighten. On the remaining
20% of the trials, the arrow points in the opposite direction.

</page>

<page intro2>

^Your task is to focus on the fixation point in the center of the
screen and indicate whether a box brightened on the left or right

Page 73

side of the screen. If a box on the left brightens, hit the "A" key.
If a box on the right brightens, hit the "S" key.

^^Remember: the arrow will usually point in the direction of the
screen with the brighter box, so it is to your advantage to focus on
the center fixation point.

^^Press the space bar to begin practicing the task.

</page>

<page begin>

^^Practice is now complete. Press the space bar to begin the task.

</page>

<page finish>

^^Thank you for participating. The demo is now finished.

</page>

Last, we'll define a special instruction page that we'll use to report performance feedback to our subjects.

<page performance>

^Performance Summary:

^^You gave the correct answer on <%
block.covertattention.percentcorrect %> percent of the trials.

^^Your average response time was <%
block.covertattention.meanlatency %> milliseconds.

</page>

Note the commands "<% block.covertattention.percentcorrect %>" and "<%
block.covertattention.meanlatency %>" that appear in the page. These commands will be replaced by the
percent correct and mean response latency for all trials in the block called "coverattention", which we will
define a little bit later. Inquisit allows you to present a variety of accuracy and latency data to the subject in
this way. See help on the page element for more information.

Creating Text Stimuli Creating Trials

Page 74

Creating Trials
Now it's time to define the trials for the covert attention task. The trial element specifies which stimuli should
be presented, when they are presented, and how the subject should respond. The trial element brings all of
the pieces together into a task.

First, we'll define a set of practice trials for the spatial judgment task. The practice trials present our
instructions text stimuli that remind the subject how to perform the task.

<trial topleftpractice>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=toplefttarget,
bottomleft, topright, bottomright; 1000=instructleft, instructright]

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

The "stimulustime" command defines the sequence of stimuli to be presented. The trials presents the fixation
point at the beginning of the trial, followed 500 milliseconds later by the left arrow picture. After another 200
milliseconds, the trial presents the target stimulus in the topleft corner and distractor stimuli in other corners.
Finally, 300 milliseconds later, the instruction text is presented.

On this trial, the subject can respond by pressing either the "s" or "a" key as defined by the validresponse
command. A response of "s" is considered correct as defined by the correctresponse command.

Finally, the beginresponsetime command indicates that Inquisit should start measuring the subject's
response 700 milliseconds into the stimulus sequence. This corresponds exactly to the time at which the
target and distractor stimuli are presented. Response latencies will be reported relative to this point in time.
Responses given before this point are ignored.

The remaining practice trials are similar, except that they present the target in different screen locations and
therefore. Depending on whether the target is presented on the left or right side of the screen, either "s" or "a"
is defined as the correct response.

<trial bottomleftpractice>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=topleft,
bottomlefttarget, topright, bottomright; 1000=instructleft,
instructright]

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

Page 75

<trial toprightpractice>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=topleft,
bottomleft, toprighttarget, bottomright; 1000=instructleft,
instructright]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial bottomrightpractice>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=topleft,
bottomleft, topright, bottomrighttarget; 1000=instructleft,
instructright]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

Now it's time to define the data collection trials. First, we'll define the congruent trials in which the arrow
points in the same direction as the target.

<trial topleftcongruent>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=toplefttarget,
bottomleft, topright, bottomright]

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

This trial presents the fixation point followed by the left arrow. The target is presented in the top left corner
and the distractors in the remaining corners. Since this is a test trial, we no longer present the instruction
reminder stimuli. The following three trials are the same except that the target is presented in the other three
corners respectively.

Page 76

<trial bottomleftcongruent>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=topleft,
bottomlefttarget, topright, bottomright]

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial toprightcongruent>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=topleft,
bottomleft, toprighttarget, bottomright]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial bottomrightcongruent>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=topleft,
bottomleft, topright, bottomrighttarget]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

Notice that when the target is in the upper or lower left corner, the correctresponse is defined as the "a" key.
When the target is in the upper or lower right, the correctresponse is the "s" key. By including both "a" and
"s" in the validresponse command, the experiment will recognize either key press as a response to the trial.
All other key presses are ignored.

Finally, we'll define the four types of incongruent trials.

<trial topleftincongruent>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=toplefttarget,
bottomleft, topright, bottomright]

Page 77

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial bottomleftincongruent>

/ stimulustimes = [0=fixation; 500=rightarrow; 700=topleft,
bottomlefttarget, topright, bottomright]

/ correctresponse = ("a")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial toprightincongruent>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=topleft,
bottomleft, toprighttarget, bottomright]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

<trial bottomrightincongruent>

/ stimulustimes = [0=fixation; 500=leftarrow; 700=topleft,
bottomleft, topright, bottomrighttarget]

/ correctresponse = ("s")

/ validresponse = ("s", "a")

/ beginresponsetime = 700

</trial>

We're finished with the trials. Now let's define the blocks.

Page 78

Creating Instructions Creating Blocks

Page 79

Creating Blocks
The next step is to define the different kinds of blocks that will be used in the experiment. For this
experiment, we will define 2 blocks, 1 to run the practice trials and 1 for data collection.

First, let's define the practice block element.

<block covertattentionpractice>

/ trials = [1-4 = noreplace(topleftpractice, bottomleftpractice,
toprightpractice, bottomrightpractice)]

/ bgstim = (fixation)

</block>

This block element, named covertattentionpractice, will run just 4 trials randomly selected from the 4 practice
trial types. We've specified that the block should randomly select from the 4 trials without replacement. Since
we are only running 4 trials and there are 4 to select from, that means that each type of trial will be run
exactly one time in the block, and the order in which the 4 types are selected will randomly vary.

Now, lets define the data collection block:

<block covertattention>

/ preinstructions = (begin)

/ trials = [1-20 = noreplace(topleftcongruent, bottomleftcongruent,
toprightcongruent, bottomrightcongruent,

 topleftcongruent, bottomleftcongruent,
toprightcongruent, bottomrightcongruent,

 topleftcongruent, bottomleftcongruent,
toprightcongruent, bottomrightcongruent,

 topleftcongruent, bottomleftcongruent,
toprightcongruent, bottomrightcongruent,

 topleftincongruent,
bottomleftincongruent, toprightincongruent, bottomrightincongruent)]

/ bgstim = (fixation)

/ postinstructions = (performance)

</block>

The block begins by presenting the instruction page named begin as specified by the preinstructions
command. It then runs a total of 20 trials randomly selected from the list of data collection trials. Finally, after
all the trials have been run it presents an instruction page called performance.

You may have noticed that the congruent trial types appear 4 times each in the trial list, whereas incongruent

Page 80

trials appear only once. Why did we repeat some of the trials? The answer is that we want 80% of the trials in
this block to be congruent and remaining 20% incongruent, so we've created a random selection pool where
the proportion of congruent to incongrent trials is 4 to 1. Since we are selecting without replacement, we are
guaranteed that the proportion of selected trials will match the proportions in the selection pool. Of the 20
trials, a randomly selected 16 will be congruent and 4 incongruent.

That does it for the blocks. Now let's define the experiment.

Creating Trials Creating an Expt

Page 81

Creating an Expt

<expt>

/ preinstructions = (inquisit, intro1, intro2)

/ blocks = [1=covertattentionpractice; 2=covertattention]

/ postinstructions = (finish)

</expt>

The expt element is quite simple. The expt begins by showing a series of three instruction pages, inquisit,
intro1, and intro2.

Next, it runs our practice block, followed by the data collection block. Each block is run exactly one time.

Finally, it displays a single instruction page called finish,

Last of all, we'll customize the format in which the data is saved using the data element.

<data>

/ format = tab

</data>

The data element allows me to control what data is recorded, the order of data columns, whether or not to
include column labels on the first row, and what character should serve as the column delimiter. In this
experiment, we'll specify that the columns should be separated by tab characters, which is a standard text
data format recognized by any data analysis software, including Excel and SPSS. For everything else, we'll
just use the default settings.

That's it. We're done!

Creating Blocks Back to Overview

Page 82

Tutorial: Dot Probe Task
Download script for this tutorial.

This tutorial builds a simple version of the Dot Probe Task, a commonly used measure of attention. Subjects
are presented two words, one above the other, and they are instructed to pronounce the upper word.
Occassionally, the upper or lower word is replaced by a "!", in which cases subjects are instructed to press
the spacebar as quickly as possible. Typically, reaction times to the "!" are shorter when it appears in the
upper position because that is where subjects are attending.

This tutorial covers the following Inquisit features:
- voicekey and keyboard responding
- text presentation
- use of "responsetrial" command to link different types of trials

On the following pages, Inquisit commands are printed in blue, and comments are printed in black:

Before you Begin
1. Download and install Inquisit Lab

Steps
1. Creating Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

Creating Text Stimuli

Page 83

http://www.millisecond.com/download/library/tutorials/
http://www.millisecond.com/download/

Creating Text Stimuli
The first step in building an experiment is to define all of the stimuli. Stimuli include text or pictures to be
shown on a given trial, background text that remains on the screen throughout a block of trials, or a feedback
text shown to the subject to indicate when to respond and whether their response was correct or incorrect.

First, let's define the pleasant words appearing in the upper and lower positions:

<text pleasanttop>

/ items = pleasant

/ position = (50%, 40%)

</text>

<text pleasantbottom>

/ items = pleasant

/ position = (50%, 60%)

</text>

This text element defines two sets of text stimuli, "pleasanttop" and "pleasantbottom", both of which have two
attributes defined, items and position. The items attribute indicates where the text items are defined. In this
case, they are defined in an item element named "pleasant" somewhere else in the script (more on this
below). The position attribute specifies where on the screen the text should be presented. Both are presented
at the 50% horizontal point of screen (i.e., the horizontal center). The pleasanttop stimulus is presented at
the vertical 40% mark, which is 10% of the screen width above center. The pleasantbottom is presented 10%
below center.

Now, lets define the items for this text element:

<item pleasant>

/ 1 = " HONOR "

/ 2 = " LUCKY "

/ 3 = " DIAMOND "

/ 4 = " LOYAL "

/ 5 = " FREEDOM "

/ 6 = " RAINBOW "

/ 7 = " LOVE "

/ 8 = " HONEST "

/ 9 = " PEACE "

/10 = " HEAVEN "

Page 84

</item>

This item element is named "pleasant", which matches the name specified in the items attribute of the text
element above. The item set consists of ten pleasant words. Note that the words are padded with spaces so
that they are all of equal length when presented in a fixed width font.

Now, lets define the rest of the stimulus categories. First, we'll define the unpleasant words:

<text unpleasanttop>

/ items = unpleasant

/ position = (50%, 40%)

</text>

<text unpleasantbottom>

/ items = unpleasant

/ position = (50%, 60%)

</text>

and the unpleasant items.

<item unpleasant>

/ 1 = " EVIL "

/ 2 = " CANCER "

/ 3 = " SICKNESS "

/ 4 = " DISASTER "

/ 5 = " POVERTY "

/ 6 = " VOMIT "

/ 7 = " BOMB "

/ 8 = " ROTTEN "

/ 9 = " ABUSE "

/10 = " MURDER "

</item>

It's a good idea to include instruction text that reminds participants how to respond to the various stimuli. We
can do this by presenting text on the screen that are shown in the background throughout a block of trials.
So, let's create the instruction text stimulus that reminds the subject to pronounce the upper word and press
the spacebar if they see '!'.

<text taskreminder>

/ items = ("Pronounce the top word and press the spacebar if you see

Page 85

the '!'")

/ position = (50, 15)

/ txcolor = (0, 0, 255)

/ fontstyle = ("Courier New", 12pt)

</text>

The reminder stimulus is a bit different than the previous stimuli. First, rather than defining the items in a
separate element, we've simply listed the single item directly in the attribute. This inline syntax is a
convenient way to define small item sets for things like instrutions, focus stimuli, and masks. Also, the
position attribute specifies that the text should be displayed at the top of the screen. Finally,the txcolor
attribute specifies that the text should be blue rather than the default color black. Colors in Inquisit are
specified as a mix of red, green, and blue components; the txcolor attribute specifies 0 intensity for red and
green components, and the maximum intensity 255 for the blue component, producing a nice blue color.

Now, lets define the target stimuli '!'. To do this, we create two text stimuli, one of which presents the target
in the upper position, and the other which presents it in lower position:

<text targettop>

/ items = (" ! ")

/ position = (50%, 40%)

</text>

<text targetbottom>

/ items = (" ! ")

/ position = (50%, 60%)

</text>

Finally, lets define a focus stimuli that will appear in the center of the screen prior to the two words:

<text focuspoint>

/ items = (" + ")

</text>

Overview Creating Instructions

Page 86

Creating Instructions
Now lets define a set of instruction pages that inform the subject how to perform the task. Defining the
instruction pages is easy using the page element. First, we'll define a simple welcome page.

<page intro>

^^^Dot Probe Task

^^Welcome and thank you for participating in this task.

^^This task requires that you have a working microphone connected to
your computer. If you do not have a microphone, please press Ctrl+Q
now to end the script.

</page>

Note that the "^" character is used to force a line break. Otherwise, lines of text are word-wrapped. Now we'll
define the rest of the instruction pages:

<page task>

Dot Probe Task Instructions:^^

On each trial, two words will be displayed. Your task is to
pronounce the TOP word as rapidly as possible while ignoring the
BOTTOM word. ^^

Sometimes, one of the words will be replaced by "!". If you see the
"!", press the spacebar as quickly as possible.

</page>

<page taskreminder>

Reminder: Pronounce the TOP word as rapidly as possible while
ignoring the BOTTOM word. ^^

If you see the "!", press the spacebar as quickly as possible.

</page>

<page end>

The Dot Probe Task is now concluded.

^^This task illustrates the effect of attention on processing visual

Page 87

stimuli. Typically, people respond to the "!" more quickly when it
appears in the top location because that's where they are focusing
their attention.

</page>

Finally, we'll specify how participants can navigate through the instruction pages using the instruct element.
A script should have only one such element.

<instruct>

/ nextkey = (" ")

/ lastlabel = ("Press the spacebar to continue")

/ nextlabel = ("Press the spacebar to continue")

/ fontstyle = ("Arial", 16pt)

</instruct>

The nextkey attribute indicates that participants must press the spacebar key to advance to the next page.
The nextlabel and lastlabel attributes specifies the text to display on the button label for advancing to the
next instruction page, or past the last instruction page. Finally, the fontstyle attribute specifies that
instructions should be presented in a 16pt Arial font.

Creating Text Stimuli Creating Trials

Page 88

Creating Trials
The next step is to define the different kinds of trials that will be used in the Dot Probe Task. Trial elements
control which stimuli are presented and how the subject may respond to those stimuli. There are eight types
of trials used in this task depending on which category of word is presented in the upper position, and
whether the word is replaced by a "!" or another word.

First, let's define trials that do not replace the words with a '!'.

<trial pleasant>

/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]

/ inputdevice = voicekey

</trial>

The trial element's name is pleasant . On each line of data in the data file corresponding to this type of trial,
this trial name is written.

The stimulustimes attribute defines the stimulus presentation sequence of the trial. The focus stimulus is
presented for 500 milliseconds, after which pleasant and unpleasant words are presented in the upper and
lower positions respectively.

The inputdevice attribute specifies the type of input expected from the participant. In this case, the
inputdevice is "voicekey", which means that Inquisit will treat any sound through the microphone as a valid
response, regardless of whether the sound was a valid word. If we cared about whether the spoken response
was an actual word, we could have set this parameter to "speech", in which case Inquisit will use a speech
recognition engine to analyze the content of what was said.

Next, we'll define a trial elementsimilar to pleasant, differing only in the location where the pleasant and
unpleasant stimulis are presented. Here's the definition of trials with unpleasant words in the top position:

<trial unpleasant>

/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]

/ inputdevice = voicekey

</trial>

Next come the trials in which one of the words is replaced by a '!'.

<trial pleasanttargettop>

/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]

/ inputdevice = voicekey

/ responsetrial = (anyresponse, targettoppleasant)

</trial>

This trial is similar to the two trials above, except that it includes the responsetrial command. The response
trial specifies a follow up trial to run if a particular response is given. In this case, the followup trial is named
"targettopleasant" and the response is any response. So, whenever this trial runs, it is immediately followed
by a trial named "targettoppleasant" to be defined below. This follow up trial presents the '!' stimulus and
times the spacebar press.

Page 89

We will now define the other 2 such trials based on whether the pleasant word is in the upper or lower
position, and whether the target is in the upper or lower position.

Trials with insect names classified with the "a" key:

<trial unpleasanttargettop>

/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]

/ inputdevice = voicekey

/ responsetrial = (anyresponse, targettopunpleasant)

</trial>

<trial pleasanttargetbottom>

/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]

/ inputdevice = voicekey

/ responsetrial = (anyresponse, targetbottompleasant)

</trial>

<trial unpleasanttargetbottom>

/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]

/ inputdevice = voicekey

/ responsetrial = (anyresponse, targetbottomunpleasant)

</trial>

Finally, we'll define the actual follow up trials that present the '!' in the upper or lower position. The first two
such trials are identical except for the name. Note that they specify "keyboard" as the inputdevice (this is
actually the default, so this command is optional), and spacebar is listed as the only valid and correct
response.

<trial targettoppleasant>

/ stimulustimes = [1=targettop]

/ inputdevice = keyboard

/ correctresponse = (" ")

</trial>

<trial targettopunpleasant>

/ stimulustimes = [1=targettop]

/ inputdevice = keyboard

/ correctresponse = (" ")

Page 90

</trial>

Since these two trials are identical, why did we define two such trials instead of one? The reason is so that
we can easily determine in the data file whether the follow up trial was preceded by an unpleasant or pleasant
word. Specifically, the "targettoppleasant" trial is always run after a pleasant word was presented in the upper
position, and the "targettopunpleasant" is run after an unpleasant word was in the upper position. Thus, we
can analyze the effect of pleasant vs unpleasant by looking at the trial name rather than what was presented
on the previous trial.

Last, we'll define the two trials that present the target '!' in the lower position.

<trial targetbottompleasant>

/ stimulustimes = [1=targetbottom]

/ inputdevice = keyboard

/ correctresponse = (" ")

</trial>

<trial targetbottomunpleasant>

/ stimulustimes = [1=targetbottom]

/ inputdevice = keyboard

/ correctresponse = (" ")

</trial>

Again, these two trials are identical except for their name, but we can use the name to identify whether the
preceding trial presented a pleasant or unpleasant word in the upper position.

Creating Instructions Creating Blocks

Page 91

Creating Blocks
The next step is to define the different kinds of blocks that will be used in the experiment. Blocks represent
sequences of trials that can be in random or fixed order. For this experiment, two block elements will be
defined, one for practice trials and one for data collection.

First, let's define the practice block element for the task.

<block practice>

/ trials = [1-20 = noreplace(pleasant, pleasant, unpleasant,
unpleasant, pleasanttargettop, pleasanttargetbottom,
unpleasanttargettop, unpleasanttargetbottom)]

/ bgstim = (taskreminder)

</block>

This block element is named "practice". The trials attribute specifies that the block runs 20 trials randomly
selected without replacement from a set of 8 different trials. You may have noticed that 2 of the trials,
"pleasant" and "unpleasant", are listed twice. The reason is that we wanted exactly half of the trials in the
block to be followed up with a target '!', and the other half not to have a follow up. As the trials attribute is
specified, 2 of every 8 trials in the block will be "pleasant", 2 will be "unpleasant", 1 will be
"pleasanttargettop", 1 will be pleasanttargetbottom, 1 will be unpleasanttargettop, and 1 will be
unpleasanttargetbottom.

The bgstim attribute specifies that the "taskreminder" instruction text stimulus is presented on the screen as
background.

The nonpractice block below (named "critical") is quite similar:

<block critical>

/ preinstructions = (taskreminder)

/ trials = [1-36 = noreplace(pleasant, pleasant, pleasant, pleasant,
unpleasant, unpleasant, unpleasant, unpleasant, pleasanttargettop,
pleasanttargetbottom, unpleasanttargettop, unpleasanttargetbottom)]

</block>

One difference is that the critical block presents the "taskreminder" instruction page at the beginning of the
block as specified by the "preinstructions" attribute. The other difference is that there are 4 "pleasant" and 4
"unpleasant" trials in the selection pool rather than 2 of each. The proportion of trials with follow up trials is
now 4 out of 12, or 33%.

Creating Trials Creating an Expt

Page 92

Creating an Expt
The next step is to define an expt element that defines the flow of blocks in the experiment. The expt element
is defined as follows:

<expt>

/ preinstructions = (intro, task, taskreminder)

/ postinstructions = (end)

/ blocks = [1=practice; 2,3=critical]

</expt>

The expt element is simple. The preinstructions attribute begings the expt by showing subjects the 3 pages
of instructions, "intro", "task", and "taskreminder". The postinstructions attribute specifies final instruction
page named "end" to be displayed at the conclusion of the experiment. The blocks attribute specifies that 1
practice block is run followed by 2 critical blocks.

Finally, we'll do a little fine tuning by specifying some default settings using the defaults element.

<defaults>

/ fontstyle = ("Courier New", 16pt)

/ posttrialpause = 500

</defaults>

The fontstyle attribute specifies that all stimulus and instruction text should be displayed in a 16pt "Courier
New" font. The postrialpause attribute specifies that a 500 ms pause should occur at the end of each trial.

The experiment is now complete! You can run the experiment by selecting the "Run" command on the
"Experiment" menu.

Creating Blocks Back to Overview

Page 93

Tutorial: Demographic Survey
Download script for this tutorial.

This tutorial builds a simple demographic survey. The sample demonstrates how to design a survey using
different types of questions, including dropdown, radiobutton, and textbox questions. It also shows how to
place validation rules on textbox input, and to adjust the font and layout of the survey.

On the following pages, Inquisit commands are printed in blue, and comments are printed in black:

Before you Begin
1. Download and install Inquisit Lab

Steps
1. Creating Survey Questions
2. Creating More Survey Questions
3. Creating a Survey Page
4. Creating a Survey

Creating Survey Questions

Page 94

http://www.millisecond.com/download/library/tutorials/
http://www.millisecond.com/download/

Creating Survey Questions
First, we'll create the questions that make up the survey. For any given question, there are a variety of user
interface controls at our disposal that give participants a means of making a response. The choice of control
depends on the style of question.

The first question on our survey asks respondents to indicate their sex. This is a multiple choice question
with two mutually exclusive options. There are a few different controls we can use for this type of question -
specifically radiobuttons, listbox, or dropdown. For this question, we'll use the dropdown control because of
its space efficiency.

Here is the syntax for creating this dropdown survey item:

<dropdown sex>

/ caption = "Sex"

/ options = ("female", "male")

</dropdown>

The type of the element is dropdown. When users click the control, the list of response options "drops down",
allowing them to click on their chosen option. The name of the item is "sex". We'll refer to this item by its
name later on in the tutorial when we specify where the item should appear on the page. The caption attribute
represents the question or instructions the respondents will see for that item. In this case, that caption is
simply "Sex". Finally, the options attribute defines the response choices -- either "male" or "female" -- in the
dropdown list. Pretty simple.

The next item will ask for the respondent's age. Since there are 100 or more possible responses to this
question, a multiple choice format would be cumbersome. Instead, we'll use the textbox element, which
simply allow users to type their age into a textbox (or as some call it, an edit box). Here is the definition of
our age item:

<textbox age>

/ caption = "Age"

/ mask = positiveinteger

/ range = (7, 110)

</textbox>

Note the element type is textbox and the name is "age". This time, the caption says "Age". Since
respondents occassionally make mistakes when typing, we want to make sure the text they enter is in fact a
valid age. The mask attribute provides a power tool for constraining the type of input that is allowed. In this
case, we've set the mask to "positiveinteger", which means that anything other than a positive integer will be
considered invalid. However, we don't want to allow just any positive integer. If the respondent types "1" for
example, we know that can't be correct because one year-olds don't typically respond to surveys. Similarly, a
response of 230432 s invalid because people don't live that long. So, we'll use the range attribute to contrain
the range of valid ages to a value from 7 to 110.

Next up is the respondent's ethnicity. Just as before, we'll use a dropdown, specifying a caption and the
response choices:

<dropdown ethnicity>

/ caption = "Ethnicity"

Page 95

/ options = ("Hispanic or Latino", "Not Hispanic or Latino",
"Unknown")

</dropdown>

The next question asks for the respondent's race. This is another multiple choice question, but it's slightly
different than the previous ones because we'll want to include an "other" option that allows the respondent to
enter a response that doesn't appear in the list of options. The dropdown question doesn't support the "other"
option, but the radiobuttons control does, so we'll use that:

<radiobuttons race>

/ caption = "Race"

/ options = (

 "American Indian/Alaska Native",

 "East Asian",

 "South Asian",

 "Native Hawaian or other Pacific Islander",

 "Black or African American",

 "White",

 "More than one race - Black/White")

/ other = "Other"

</radiobuttons>

The radiobuttons* element has caption and option attributes that serve the same purpose as they do with the
dropdown element. However, we've specified another attribute called other that tells Inquisit to add an "Other"
option to the response choices. That options will include a textbox in which respondents can type their race if
it isn't in the list.

*Sidenote: You may be wondering why this control is called "radiobuttons". If you were born before 1970, you
might recall that the car radios at the time often had a row of punch buttons for selecting a preset radio
station. When you punched in one button, the previously selected button popped out, thus assuring that only
one station could be selected at a time. The radiobuttons user interface control functions in a similar way, so
the name caught on.

Next, we'll ask for participant's political identity. This, too, is a multiple choice question, so either the
dropdown or radiobuttons controls would work just fine. However, since liberal is generally associated with
"left" and conservative with "right", we'll use a slider control in order to leverages this common association.
With a slider control, users respond by sliding a button along a track until it is in the desired position. The
track can offer a near-continuous array of positions, or it can force the button into a fixed number of discrete
locations. Positions along the track can be labeled to indicate their meaning. With our slider control,
respondents will move the button leftward to indicate increasingly liberal values and rightward to indicate
increasingly conservative values. Our slider item is defined as follows:

<slider political>

/ caption = "Political Identity"

/ labels = (

Page 96

 "strongly~nliberal", "moderately~nliberal",
"slightly~nliberal",

 "neutral", "slightly~nconservative",
"moderately~nconservative",

 "strongly~nconservative")

/ range = (1, 7)

/ slidersize = (60%, 5%)

/ showtooltips = false

</slider>

The caption attribute has the same function as in the previous items. The labels attribute specifies the labels
that appear in equal distances from left to right along the slider track. Note that labels include the characters
"~n". This is not a typo, it is a special character sequence indicating that Inquisit should insert a line break in
that position when displaying the label on the screen.

The range attribute defines the number of positions on the track. In this case, there are seven positions who's
values range from 1 to 7. Since there also seven labels, each position will align with each of the labels. Next,
we'll use to slidersize attribute define the width and height of the slider so that it is wide enough to
accomodate all of the labels. We've set the width to be 60% of the width of the computer screen, which
should give it plenty of room. Finally, we've set the showtooltips attribute to false, so that the control doesn't
display the values of each position in a tooltip as the user moves the button along the slider.

For the respondent's occupation, we'll again use a dropdown control. The dropdown is particularly useful in
this case because it allows us to display a large number of options in a small amount of screen space:

<dropdown occupation>

/ caption = "Occupation"

/ options = ("Administrative Support - Supervisors", "Administrative
Support - Financial Clerks",

 "Administrative Support - Information and Records",

 "Administrative Support - Recording, Scheduling, Dispatching,
Distributing",

 "Administrative Support - Secretaries and Assistants",

 "Administrative Support - Other Support (data entry, office clerk,
proofreaders)",

 "Arts/Design/Entertainment/Sports - Art and Design",
"Arts/Design/Entertainment/Sports - Entertainers and Performers",

 "Arts/Design/Entertainment/Sports - Media and communication",
"Arts/Design/Entertainment/Sports - Media Equipment workers",

 "Business - Business Operations", "Business - Financial
Specialists", "Computer/Math - Computer Specialists",

 "Computer/Math - Math Scientists","Computer/Math - Math
Technicians", "Construction/Extraction - Supervisors",

Page 97

 "Construction/Extraction - Construction
Trades","Construction/Extraction - Helpers, Construction Trades",

 "Construction/Extraction - Extraction (e.g., mining, oil)",
"Construction/Extraction - Other",

 "Education - Postsecondary Teachers", "Education - Primary,
Secondary, and Special Ed Teachers",

 "Education - Other teachers and instructors", "Education -
Librarians, Curators, Archivists",

 "Education - Other education, training, and library occupations",
"Education - Student",

 "Engineers/Architects - Architects, Surveyors, Cartographers",
"Engineers/Architects - Engineers",

 "Engineers/Architects - Drafters, Engineering and Mapping
Technicians", "Farming, Fishing, Forestry - Supervisors",

 "Farming, Fishing, Forestry - Agriculture","Farming, Fishing,
Forestry - Fishing and Hunting",

 "Farming, Fishing, Forestry - Forest, Conservation, Logging",
"Farming, Fishing, Forestry - Other",

 "Food Service - Supervisors", "Food Service - Cooks and food prep",
"Food Service - Servers",

 "Food Service - Other food service workers (e.g., dishwasher,
host)",

 "Healthcare - Diagnosing and Treating Practitioners (MD, Dentist,
etc.)",

 "Healthcare - Technologists and Technicians", "Healthcare - Nursing
and Home Health Assistants",

 "Healthcare - Occupational and Physical Therapist Assistants",
"Healthcare - Other healthcare support",

 "Homemaker or Parenting", "Legal - Lawyers, Judges, and related
workers", "Legal - Legal support workers",

 "Maintenance - Building and Grounds Supervisors", "Maintenance -
Building workers","Maintenance - Grounds Maintenance",

 "Management - Top Executives", "Management - Advertising, Sales,
PR, Marketing","Management - Operations Specialists",

 "Management - Other Management Occupations", "Military - Officer
and Tactical Leaders/Managers",

 "Military - First-line enlisted supervisor/manager", "Military -
enlisted tactical, air/weapons, crew, other",

 "Production - Supervisors", "Production - Assemblers and

Page 98

Fabricators","Production - Food processing",

 "Production - Metal and Plastic", "Production - Printers",
"Production - Textile, Apparel, Furnishings",

 "Production - Woodworkers", "Production - Plant and System
Operators", "Production - Other",

 "Protective Service - Supervisors", "Protective Services - Fire
fighting and prevention",

 "Protective services - Law Enforcement", "Protective Services -
Other (e.g., security, lifeguards, crossing guards)",

 "Repair/Installation - Supervisors", "Repair/Installation -
Electrical and Electronic",

 "Repair/Installation - Vehicle and Mobile Equipment",
"Repair/Installation - Other", "Retired",

 "Sales - Supervisors", "Sales - Retail","Sales - Sales
Representatives and Services",

 "Sales - Wholesale and Manufacturing", "Sales - Other sales (e.g.,
telemarketers, real estate)",

 "Science - Life Scientists", "Science - Physical
scientists","Science - Social Scientists",

 "Science - Life, Physical, Social Science Technicians", "Service
and Personal Care - Supervisors",

 "Service and Personal Care - Animal Care","Service and Personal
Care - Entertainment attendants",

 "Service and Personal Care - Funeral Service", "Service and
Personal Care - Personal Appearance",

 "Service and Personal Care - Transportation, Tourism, Lodging",

 "Service and Personal Care - Other service (e.g., child care,
fitness)",

 "Social Service - Counselors, Social Workers, Community
specialists", "Social Service - Religious Workers",

 "Transportation - Supervisors", "Transportation - Air
Transportation","Transportation - Motor Vehicle Operators",

 "Transportation - Rail Transport", "Transportation - Water
Transport", "Transportation - Material Moving",

 "Transportation - Other", "Unemployed")

/ optionvalues = (

 "43-1000", "43-3000", "43-4000", "43-5000", "43-6000", "43-9000",
"27-1000", "27-2000", "27-3000",

Page 99

 "27-4000", "13-1000", "13-2000", "15-1000", "15-2000", "15-3000",
"47-1000", "47-2000", "47-3000",

 "47-5000", "47-4000", "25-1000", "25-2000", "25-3000", "25-4000",
"25-9000", "25-9999", "17-1000",

 "17-2000", "17-3000", "45-1000", "45-2000", "45-3000", "45-4000",
"45-9000", "35-1000", "35-2000",

 "35-3000", "35-9000", "29-1000", "29-2000", "31-1000", "31-2000",
"31-9000", "00-0000", "23-1000",

 "23-2000", "37-1000", "37-2000", "37-3000", "11-0000", "11-2000",
"11-3000", "11-9000", "55-1000",

 "55-2000", "55-3000", "51-1000", "51-2000", "51-3000", "51-4000",
"51-5000", "51-6000", "51-7000",

 "51-8000", "51-9000", "33-1000", "33-2000", "33-3000", "33-9000",
"49-1000", "49-2000", "49-3000",

 "49-9000", "99-0001", "41-1000", "41-2000", "41-3000", "41-4000",
"41-9000", "19-1000", "19-2000",

 "19-3000", "19-4000", "39-1000", "39-2000", "39-3000", "39-4000",
"39-5000", "39-6000", "39-9000",

 "21-1000", "21-2000", "53-1000", "53-2000", "53-3000", "53-4000",
"53-5000", "53-7000", "53-6000",

 "99-9999")

</dropdown>

As you can see, there are a lot of choices in the list! You may have also noticed that we're using the
optionvalues attribute. By default, Inquisit records the text of the selected option into the data file. The
optionvalues attribute allows us to assign alternative values to each option to be used in recording the data.
This is handy if you want to use numeric values or codes when analyzing the data rather than the sometimes
long strings of text that are displayed for each response choice. In this case, each occupation will be
recorded using the Standard Occupational Classification code as defined by the US Department of Labor.

Overview Creating Survey Questions (Continued)

Page 100

Creating Survey Questions (Continued)
The next item allows respondents to indicate their religion. Again, we'll use a dropdown given the large
number of options.

<dropdown religion>

/ caption = "Religious Affiliation"

/ options = (

 "None", "African Methodist Episcopal Church", "African Methodist
Episcopal Zion Church", "Agnostic",

 "American Baptist Association", "American Baptist Churches in the
U.S.A.",

 "Antiochian Orthodox Christian Diocese of North America", "Armenian
Apostolic Church of America",

 "Assemblies of God", "Atheist", "Baha'i", "Baptist Bible Fellowship
International", "Baptist General Conference",

 "Baptist Missionary Association of America", "Buddhist", "Christian
and Missionary Alliance, The",

 "Christian Brethren (Plymouth Brethren)", "Christian Church
(Disciples of Christ)",

 "Christian Churches and Churches of Christ", "Christian
Congregation, Inc., The", "Christian Methodist Episcopal Church",

 "Christian Reformed Church in North America", "Church of God in
Christ", "Church of God of Prophecy",

 "Church of God (Anderson, IN)", "Church of God (Cleveland, TN)",
"Church of Jesus Christ of Latter-day Saints, The",

 "Church of the Brethren", "Church of the Nazarene", "Churches of
Christ", "Conservative Baptist Association of America",

 "Coptic Orthodox Church", "Cumberland Presbyterian Church",
"Eastern Orthodox", "Eastern Orthodox", "Ecumenical",

 "Episcopal Church", "Evangelical Covenant Church, The",
"Evangelical Free Church of America, The",

 "Evangelical Lutheran Church in America", "Evangelical Presbyterian
Church", "Free Methodist Church of North America",

 "Full Gospel Fellowship of Churches and Ministers Intl", "General
Association of General Baptists",

 "General Association of Regular Baptist Churches", "General

Page 101

Conference Mennonite Brethren Churches",

 "Grace Gospel Fellowship", "Greek Orthodox Archdiocese of America",
"Hindu", "Independent Fundamental Churches of America",

 "International Church of the Foursquare Gospel", "International
Council of Community Churches",

 "International Pentecostal Holiness Church", "Jehovah's Witnesses",
"Jewish", "Lutheran Church-Missouri Synod, The",

 "Mennonite Church", "Muslim/Islamic", "National Assoc of
Congregational Christian Churches",

 "National Association of Free Will Baptists", "National Baptist
Convention of America, Inc.",

 "National Baptist Convention, USA, Inc.", "National Missionary
Baptist Convention of America", "Old Order Amish Church",

 "Orthodox Church in America", "Pentecostal Assemblies of the World,
Inc.", "Pentecostal Church of God",

 "Pentecostal Church of God", "Presbyterian Church in America",
"Presbyterian Church (U.S.A.)",

 "Progressive National Baptist Convention, Inc.", "Reformed Church
in America", "Religious Society of Friends (Conservative)",

 "Reorganized Church of Jesus Christ of Latter Day Saints", "Roman
Catholic Church, The",

 "Romanian Orthodox Episcopate of America, The", "Salvation
Army,The", "Serbian Orthodox Church in the U.S.A. and Canada",

 "Seventh-day Adventist Church", "Sikh", "Southern Baptist
Convention", "Unitarian Universalist", "United Church of Christ",

 "United Methodist Church, The", "Wesleyan Church, The", "Wisconsin
Evangelical Lutheran Synod", "Other")

</dropdown>

Next is education level, again using a dropdown.

<dropdown education>

/ caption = "Education"

/ options = ("elementary", "junior high", "some highschool", "high
school graduate", "some college",

 "associate's degree", "bachelor's degree", "some graduate school",
"masters degree", "M.B.A.",

 "J.D.", "M.D.", "Ph.D.", "other advanced degree")

Page 102

</dropdown>

The next two items ask for country of citizenship and residence, respectively. The name of each country will
be displayed in our dropdown list, as specified by the options attribute. The value recorded in the data file will
be the two letter postal abbreviation for that country, as specified by the optionsvalues attribute.

<dropdown citizenship>

/ caption = "Country/Region of Primary Citizenship"

/ options = (

 "U.S.A.", "Afghanistan", "Albania", "Algeria", "American Samoa",
"Andorra", "Angola",

 "Anguilla", "Antarctica", "Antigua And Barbuda", "Argentina",
"Armenia", "Aruba",

 "Australia", "Austria", "Azerbaijan", "Bahamas, The", "Bahrain",
"Bangladesh", "Barbados",

 "Belarus", "Belgium", "Belize", "Benin", "Bermuda", "Bhutan",
"Bolivia", "Bosnia and Herzegovina",

 "Botswana", "Bouvet Island", "Brazil", "British Indian Ocean
Territory", "Brunei", "Bulgaria",

 "Burkina Faso", "Burundi", "Cambodia", "Cameroon", "Canada", "Cape
Verde", "Cayman Islands",

 "Central African Republic", "Chad", "Chile", "China", "Christmas
Island", "Cocos (Keeling) Islands",

 "Colombia", "Comoros", "Congo", "Congo, Democratic Republic of
the", "Cook Islands", "Costa Rica",

 "Cote D'Ivoire (Ivory Coast)", "Croatia (Hrvatska)", "Cuba",
"Cyprus", "Czech Republic", "Denmark",

 "Djibouti", "Dominica", "Dominican Republic", "East Timor",
"Ecuador", "Egypt", "El Salvador",

 "Equatorial Guinea", "Eritrea", "Estonia", "Ethiopia", "Falkland
Islands (Islas Malvinas)",

 "Faroe Islands", "Fiji Islands", "Finland", "France", "French
Guiana", "French Polynesia",

 "French Southern Territories", "Gabon", "Gambia, The", "Georgia",
"Germany", "Ghana", "Gibraltar",

 "Greece", "Greenland", "Grenada", "Guadeloupe", "Guam",
"Guatemala", "Guinea", "Guinea-Bissau",

 "Guyana", "Haiti", "Heard and McDonald Islands", "Honduras", "Hong
Kong S.A.R.", "Hungary",

Page 103

 "Iceland", "India", "Indonesia", "Iran", "Iraq", "Ireland",
"Israel", "Italy", "Jamaica", "Japan",

 "Jordan", "Kazakhstan", "Kenya", "Kiribati", "Korea", "Korea,
North", "Kuwait", "Kyrgyzstan",

 "Laos", "Latvia", "Lebanon", "Lesotho", "Liberia", "Libya",
"Liechtenstein", "Lithuania", "Luxembourg",

 "Macau S.A.R.", "Macedonia, Former Yugoslav Republic of",
"Madagascar", "Malawi", "Malaysia",

 "Maldives", "Mali", "Malta", "Marshall Islands", "Martinique",
"Mauritania", "Mauritius", "Mayotte",

 "Mexico", "Micronesia", "Moldova", "Monaco", "Mongolia",
"Montserrat", "Morocco", "Mozambique",

 "Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands Antilles",
"Netherlands, The", "New Caledonia",

 "New Zealand", "Nicaragua", "Niger", "Nigeria", "Niue", "Norfolk
Island", "Northern Mariana Islands",

 "Norway", "Oman", "Pakistan", "Palau", "Panama", "Papua New
Guinea", "Paraguay", "Peru",

 "Philippines", "Pitcairn Island", "Poland", "Portugal", "Puerto
Rico", "Qatar", "Reunion",

 "Romania", "Russia", "Rwanda", "Saint Helena", "Saint Kitts And
Nevis", "Saint Lucia",

 "Saint Pierre and Miquelon", "Saint Vincent And The Grenadines",
"Samoa", "San Marino",

 "Sao Tome and Principe", "Saudi Arabia", "Senegal", "Seychelles",
"Sierra Leone", "Singapore",

 "Slovakia", "Slovenia", "Solomon Islands", "Somalia", "South
Africa",

 "South Georgia And The South Sandwich Islands", "Spain", "Sri
Lanka", "Sudan", "Suriname",

 "Svalbard And Jan Mayen Islands", "Swaziland", "Sweden",
"Switzerland", "Syria", "Taiwan", "Tajikistan",

 "Tanzania", "Thailand", "Togo", "Tokelau", "Tonga", "Trinidad And
Tobago", "Tunisia", "Turkey",

 "Turkmenistan", "Turks And Caicos Islands", "Tuvalu", "Uganda",
"Ukraine", "United Arab Emirates",

 "United Kingdom", "U.S.A.", "United States Minor Outlying Islands",
"Uruguay", "Uzbekistan",

 "Vanuatu", "Vatican City State (Holy See)", "Venezuela", "Vietnam",

Page 104

"Virgin Islands (British)",

 "Virgin Islands (US)", "Wallis And Futuna Islands", "Yemen",
"Yugoslavia", "Zambia", "Zimbabwe")

/ optionvalues = (

 "US", "AF", "AL", "DZ", "AS", "AD", "AO", "AI", "AQ", "AG", "AR",
"AM", "AW", "AU", "AT", "AZ", "BS",

 "BH", "BD", "BB", "BY", "BE", "BZ", "BJ", "BM", "BT", "BO", "BA",
"BW", "BV", "BR", "IO", "BN", "BG",

 "BF", "BI", "KH", "CM", "CA", "CV", "KY", "CF", "td", "CL", "CN",
"CX", "CC", "CO", "KM", "CG", "CD",

 "CK", "CR", "CI", "HR", "CU", "CY", "CZ", "DK", "DJ", "DM", "DO",
"TP", "EC", "EG", "SV", "GQ", "ER",

 "EE", "ET", "FK", "FO", "FJ", "FI", "FR", "GF", "PF", "TF", "GA",
"GM", "GE", "DE", "GH", "GI", "GR",

 "GL", "GD", "GP", "GU", "GT", "GN", "GW", "GY", "HT", "HM", "HN",
"HK", "HU", "IS", "IN", "ID", "IR",

 "IQ", "IE", "IL", "IT", "JM", "JP", "JO", "KZ", "KE", "KI", "KR",
"KP", "KW", "KG", "LA", "LV", "LB",

 "LS", "LR", "LY", "li", "LT", "LU", "MO", "MK", "MG", "MW", "MY",
"MV", "ML", "MT", "MH", "MQ", "MR",

 "MU", "YT", "MX", "FM", "MD", "MC", "MN", "MS", "MA", "MZ", "MM",
"NA", "NR", "NP", "AN", "NL", "NC",

 "NZ", "NI", "NE", "NG", "NU", "NF", "MP", "NO", "OM", "PK", "PW",
"PA", "PG", "PY", "PE", "PH", "PN",

 "PL", "PT", "PR", "QA", "RE", "RO", "RU", "RW", "SH", "KN", "LC",
"PM", "VC", "WS", "SM", "ST", "SA",

 "SN", "SC", "SL", "SG", "SK", "SI", "SB", "SO", "ZA", "GS", "ES",
"LK", "SD", "SR", "SJ", "SZ", "SE",

 "CH", "SY", "TW", "TJ", "TZ", "TH", "TG", "TK", "TO", "TT", "TN",
"tr", "TM", "TC", "TV", "UG", "UA",

 "AE", "UK", "US", "UM", "UY", "UZ", "VU", "VA", "VE", "VN", "VG",
"VI", "WF", "YE", "YU", "ZM", "ZW")

</dropdown>

<dropdown residence>

/ caption = "Country/Region of Residence"

Page 105

 "U.S.A.", "Afghanistan", "Albania", "Algeria", "American Samoa",
"Andorra", "Angola",

 "Anguilla", "Antarctica", "Antigua And Barbuda", "Argentina",
"Armenia", "Aruba",

 "Australia", "Austria", "Azerbaijan", "Bahamas, The", "Bahrain",
"Bangladesh", "Barbados",

 "Belarus", "Belgium", "Belize", "Benin", "Bermuda", "Bhutan",
"Bolivia", "Bosnia and Herzegovina",

 "Botswana", "Bouvet Island", "Brazil", "British Indian Ocean
Territory", "Brunei", "Bulgaria",

 "Burkina Faso", "Burundi", "Cambodia", "Cameroon", "Canada", "Cape
Verde", "Cayman Islands",

 "Central African Republic", "Chad", "Chile", "China", "Christmas
Island", "Cocos (Keeling) Islands",

 "Colombia", "Comoros", "Congo", "Congo, Democratic Republic of
the", "Cook Islands", "Costa Rica",

 "Cote D'Ivoire (Ivory Coast)", "Croatia (Hrvatska)", "Cuba",
"Cyprus", "Czech Republic", "Denmark",

 "Djibouti", "Dominica", "Dominican Republic", "East Timor",
"Ecuador", "Egypt", "El Salvador",

 "Equatorial Guinea", "Eritrea", "Estonia", "Ethiopia", "Falkland
Islands (Islas Malvinas)",

 "Faroe Islands", "Fiji Islands", "Finland", "France", "French
Guiana", "French Polynesia",

 "French Southern Territories", "Gabon", "Gambia, The", "Georgia",
"Germany", "Ghana", "Gibraltar",

 "Greece", "Greenland", "Grenada", "Guadeloupe", "Guam",
"Guatemala", "Guinea", "Guinea-Bissau",

 "Guyana", "Haiti", "Heard and McDonald Islands", "Honduras", "Hong
Kong S.A.R.", "Hungary",

 "Iceland", "India", "Indonesia", "Iran", "Iraq", "Ireland",
"Israel", "Italy", "Jamaica", "Japan",

 "Jordan", "Kazakhstan", "Kenya", "Kiribati", "Korea", "Korea,
North", "Kuwait", "Kyrgyzstan",

 "Laos", "Latvia", "Lebanon", "Lesotho", "Liberia", "Libya",
"Liechtenstein", "Lithuania", "Luxembourg",

 "Macau S.A.R.", "Macedonia, Former Yugoslav Republic of",
"Madagascar", "Malawi", "Malaysia",

 "Maldives", "Mali", "Malta", "Marshall Islands", "Martinique",

Page 106

"Mauritania", "Mauritius", "Mayotte",

 "Mexico", "Micronesia", "Moldova", "Monaco", "Mongolia",
"Montserrat", "Morocco", "Mozambique",

 "Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands Antilles",
"Netherlands, The", "New Caledonia",

 "New Zealand", "Nicaragua", "Niger", "Nigeria", "Niue", "Norfolk
Island", "Northern Mariana Islands",

 "Norway", "Oman", "Pakistan", "Palau", "Panama", "Papua New
Guinea", "Paraguay", "Peru",

 "Philippines", "Pitcairn Island", "Poland", "Portugal", "Puerto
Rico", "Qatar", "Reunion",

 "Romania", "Russia", "Rwanda", "Saint Helena", "Saint Kitts And
Nevis", "Saint Lucia",

 "Saint Pierre and Miquelon", "Saint Vincent And The Grenadines",
"Samoa", "San Marino",

 "Sao Tome and Principe", "Saudi Arabia", "Senegal", "Seychelles",
"Sierra Leone", "Singapore",

 "Slovakia", "Slovenia", "Solomon Islands", "Somalia", "South
Africa",

 "South Georgia And The South Sandwich Islands", "Spain", "Sri
Lanka", "Sudan", "Suriname",

 "Svalbard And Jan Mayen Islands", "Swaziland", "Sweden",
"Switzerland", "Syria", "Taiwan", "Tajikistan",

 "Tanzania", "Thailand", "Togo", "Tokelau", "Tonga", "Trinidad And
Tobago", "Tunisia", "Turkey",

 "Turkmenistan", "Turks And Caicos Islands", "Tuvalu", "Uganda",
"Ukraine", "United Arab Emirates",

 "United Kingdom", "U.S.A.", "United States Minor Outlying Islands",
"Uruguay", "Uzbekistan",

 "Vanuatu", "Vatican City State (Holy See)", "Venezuela", "Vietnam",
"Virgin Islands (British)",

 "Virgin Islands (US)", "Wallis And Futuna Islands", "Yemen",
"Yugoslavia", "Zambia", "Zimbabwe")

/ optionvalues = (

 "US", "AF", "AL", "DZ", "AS", "AD", "AO", "AI", "AQ", "AG", "AR",
"AM", "AW", "AU", "AT", "AZ", "BS",

 "BH", "BD", "BB", "BY", "BE", "BZ", "BJ", "BM", "BT", "BO", "BA",
"BW", "BV", "BR", "IO", "BN", "BG",

Page 107

 "BF", "BI", "KH", "CM", "CA", "CV", "KY", "CF", "td", "CL", "CN",
"CX", "CC", "CO", "KM", "CG", "CD",

 "CK", "CR", "CI", "HR", "CU", "CY", "CZ", "DK", "DJ", "DM", "DO",
"TP", "EC", "EG", "SV", "GQ", "ER",

 "EE", "ET", "FK", "FO", "FJ", "FI", "FR", "GF", "PF", "TF", "GA",
"GM", "GE", "DE", "GH", "GI", "GR",

 "GL", "GD", "GP", "GU", "GT", "GN", "GW", "GY", "HT", "HM", "HN",
"HK", "HU", "IS", "IN", "ID", "IR",

 "IQ", "IE", "IL", "IT", "JM", "JP", "JO", "KZ", "KE", "KI", "KR",
"KP", "KW", "KG", "LA", "LV", "LB",

 "LS", "LR", "LY", "li", "LT", "LU", "MO", "MK", "MG", "MW", "MY",
"MV", "ML", "MT", "MH", "MQ", "MR",

 "MU", "YT", "MX", "FM", "MD", "MC", "MN", "MS", "MA", "MZ", "MM",
"NA", "NR", "NP", "AN", "NL", "NC",

 "NZ", "NI", "NE", "NG", "NU", "NF", "MP", "NO", "OM", "PK", "PW",
"PA", "PG", "PY", "PE", "PH", "PN",

 "PL", "PT", "PR", "QA", "RE", "RO", "RU", "RW", "SH", "KN", "LC",
"PM", "VC", "WS", "SM", "ST", "SA",

 "SN", "SC", "SL", "SG", "SK", "SI", "SB", "SO", "ZA", "GS", "ES",
"LK", "SD", "SR", "SJ", "SZ", "SE",

 "CH", "SY", "TW", "TJ", "TZ", "TH", "TG", "TK", "TO", "TT", "TN",
"tr", "TM", "TC", "TV", "UG", "UA",

 "AE", "UK", "US", "UM", "UY", "UZ", "VU", "VA", "VE", "VN", "VG",
"VI", "WF", "YE", "YU", "ZM", "ZW")

</dropdown>

Finally, we'll ask participants to enter their postal code using a textbox:

<textbox zipcode>

/ caption = "Current Postal Code"

</textbox>

Note that Inquisit has a mask called "uszipcode" that constrains the input to be a valid United States zip
code (5 digit format, plus 4 optional). If we expect respondents from other countries, however, we should leave
off this constraint since postal codes throughout the world come in a variety of formats.

Creating Survey Questions Creating Survey Pages

Page 108

Page 109

Creating Survey Pages
Once you've defined the questions, the next step is to determine how to layout those questions on the pages
of the survey. Inquisit allows you break out questions into separate pages/screens. Respondents can answer
the questions on a single page and then click the "Next" button to answer more questions on the next page.
The survey can be configured to allow them to navigate back to previous page and change their answers, or to
allow forward only navigation.

Inquisit allows us to configure the font size of each question along with the spacing between questions. By
using small fonts and spacings, we could try to squeeze all of the questions onto a single page. The result
would look cramped, however, so we'll separate the questions into two pages.

The first page is specified here:

<surveypage demographics1>

/ caption = "Please answer the following demographic questions"

/ fontstyle = ("Verdana", -16, true, false, false, false, 5, 0)

/ questions = [1=sex; 2=age; 3=ethnicity; 4=race; 5=political;
6=occupation]

</surveypage>

The element type is surveypage, and the name of this page "demographics1". The caption attribute tells
Inquisit to display a simple instruction at the top of the page. The fontstyle attribute specifies the font in which
caption appears, 14pt Verdana in bold. Finally, the questions attribute lists the items that we defined
previously that should be included on the page. In this case, we've specified six questions -- sex, age,
ethnicity, race, political, and occupation -- presented in that order.

Now let's define the second page:

<surveypage demographics2>

/ caption = "Please answer the following demographic questions
(continued)"

/ fontstyle = ("Verdana", -16, true, false, false, false, 5, 0)

/ questions = [1=religion; 2=education; 3=citizenship; 4=residence;
5=zipcode]

</surveypage>

This page has a caption similar to the first page, although we've added "(continued)" to it. The fonstyle is the
same as the first page. This page presents the remaining 5 questions that we previously created -- religion,
education, citizenship, residence, and zipcode -- in that order.

That wasn't too painful.

Creating Survey Questions (Continued) Creating the Survey

Page 110

Page 111

Creating the Survey
Last but not least, we need to specify the order in which the pages are presented, along with some other
global settings. For this, we use the survey element:

<survey demographics>

/ pages = [1=demographics1; 2=demographics2]

/ responsefontstyle = ("Verdana", -12, false, false, false, false,
5, 0)

/ itemfontstyle = ("Verdana", -13, false, false, false, false, 5, 0)

/ itemspacing = 2%

/ showpagenumbers = false

</survey>

We've named our survey "demographics". The pages attribute specifies which pages appear in the survey and
in what order. Our survey presents the surveypage called "demographics1" followed by the surveypage called
"demographics2".

The responsefontstyle attribute specifies the font to use for response options in the survey. This font applies
to the choices in our multple choice items, and the text that the user types in the textbox items.

The itemfontstyle attribute specifies the font used for the captions of our survey questions.

The itemspacing attribute specifies that the space between questions should be 2% of the height of the
screen.

The showpagenumbers attribute specifies whether each page should be numbered. Since our survey is only
two pages, we'll turn off page numbering by setting this attribute to false.

That's it - our survey is complete. You can run the survey by selecting the "Run" command on Inquisit's
"Experiment" menu. Once you've completed the survey, the data will be recorded into a file called
"demographics.iqdat". The name based on the name of the survey element. The data file will be located in the
same folder as your script file.

Creating Survey Pages Back to Overview

Page 112

Inquisit How To's
This section contains how-to topics on various Inquisit features. If you don't find what you are looking for here,
please email your question or request to .

How to Interoperate with Web Survey Packages

How to Adjust the Response Window

How to Combine Multiple Data Files into a Single File

How to Run an Experiment from the Command Line

How to do Conditional Branching

How to Control Trial Duration and Inter-Trial Intervals

How to Erase Stimuli

Useful Keyboard Commands

How to Run Individual Blocks, Trials, Stimuli, and Instruction Pages

How to Present Stimulus Pairs

How to Use the Parallel Port Monitor Tool (Windows and Mac)

How to Run an Experiment

How to Present TTL Signals Through the Parallel Port (Windows and Mac)

How to Record Responses from a Serial Response Box

How to Setup and Use Setup Speech Recognition

How to Present Stimuli Provided by Subjects

How to Debug a Script

How to Test a Script

How to Run an Inquisit 6 Experiment on the Web

How to Control Response Timing

Page 113

How to Run an Experiment
There are several ways to run an Inquisit experiment.

Using Inquisit's Menus
 On Windows, Launch Inquisit from the Start Menu. On Mac OSX, double-click Inquisit.app in the

Applications folder.
 Select the Open command on Inquisit's File menu.
 Choose the script file you would like to run.
 Select the Run command on Inquisit's Experiment menu.
 When prompted, enter a group id and subject id and press the OK button.

Using Windows Explorer
 Find the script file you would like to run in Windows Explorer.
 Double click on the script file.
 When prompted, enter a subject number and press the OK button.

(You can also create shortcuts to Inquisit scripts, and launch the script by double clicking on the shortcut
icon.)

Using the Commmand Prompt on Windows or the
Terminal on Mac
For details on running Inquisit from a command prompt, see Running an Experiment from the Command Line

Interrupting an Experiment or Block in Progress
While the experiment is running,

 Press Ctrl+b to skip the rest of the trials of the current block.
 Press Ctrl+q to immediately end the experiment.

Page 114

Launch Inquisit Experiments Using
Command Line Parameters
Inquisit supports launching experiments from the command line shell. This enables you to launch an
experiment directly from the Windows Command Prompt or the Mac OSX Terminal application. It also
provides a way for other applications to run a specific Inquisit script using a specific subject and/or group id.

When launching from a command prompt, you can supply arguments specifying the subject id, script, and
other arguments so that the script will simply be launched without opening the editor or prompting for a
subject id. This enables Inquisit experiments to be directly launched from external software programs or
shells scripts.

The command line syntax is as follows:

>"inquisitpath" "scriptpath" [options]

Options:

-s <subjectid>

-g <groupid>

-p <password>

-m <monkey|human>

-h

The definition of each parameter is as follows:

inquisitpath
Quoted, fully qualified path to the Inquisit.exe file. For example, "C:\Program
Files\Millisecond Software\Inquisit 6\Inquisit.exe" or "/Applications/Inquisit.app".

scriptpath Quoted, fully qualified path to the script file to run. For example, "C:\My Scripts\script.iqx".

groupid The group id for this session.

subjectid The subject id for this session.

monkey | human
If "monkey" is specified, the automatic hydromatic systematic test monkey runs the script.
Otherwise, if "human" is specified, the script runs in standard interactive mode.

password
Specifies the password use to decrypt an encryptd script file. The password must exactly
match the password given when the encrypted file was saved.

h Show command line syntax help.

On Windows, the full path to Inquisit is usually:

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"

On Mac OSX, the full path is usually:

/Applications/Inquisit 6.app/Contents/MacOS/Inquisit 6

Page 115

This path may vary if you have installed Inquisit to a different drive, volume, or folder.

If no other parameters besides the Inquisit path are specified, Inquisit will simply open.

If the full path to a script file is included in the command, Inquisit is launched, the script file is opened, the
user is prompted for a group and subject id, and the experiment begins.

If the group and subject ids are included in the command, Inquisit is launched and the script is run using the
specified ids. The group and subject id option are only valid when a script file is specified.

The following runs an IAT script using a subject id of 1000 and group id of 2 on a Windows command line.

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\MyInquisitScripts\IAT.iqx" -s 1000 -g 2

The following does the sampe on a Mac terminal prompt

"/Applications/Inquisit.app" "~/myscripts/IAT.iqx" -s 1000 -g 2

Registering Inquisit from the Command
Line
Inquisit supports automatic registration from the command line. This can be useful for automated admin
installations on a large number of machines in a managed network. To auto-register, the deployment scripts
can simply run Inquisit with the following parameters after the installation is complete.

The command line syntax is as follows:

>"inquisitpath" [options]

Options:

--register

--userid <email>

--password <password>

--account <account name>

The definition of each parameter is as follows:

inquisitpath
Quoted, fully qualified path to the Inquisit.exe file. For example, "C:\Program
Files\Millisecond Software\Inquisit 6\Inquisit.exe" or "/Applications/Inquisit.app".

--register
Indicates Inquisit should register with key from the user account specified in the other
parameters.

--userid The email address of the user of the account to retrieve the key from.

--password The password correspondeing to the userid.

--account
If the user is a member of more than one account, specify the account from which to obtain
the key. If the user is a member of only one account, this parameter need not be specified.

Page 116

Page 117

How to Run Blocks, Trials, and Stimuli
Inquisit 6 allows you to run individual elements in a script, such as blocks, trials, stimuli, or instruction
pages. This can be very handy for demonstrating tasks and methods in lectures and presentations, and
provides a convenient way to quickly test new elements.

To run a given element, simply right click anywhere within that element's definition in the script editor and
select the Run command from the context menu. You will be prompted for a subject id and group id, after
which the element you selected will run. If the element was a stimulus, it will display all of the stimulus items
one at a time. If it is a trial or block, it will simply run it.

Page 118

How to Present Stimuli Provided by
Subjects
Inquisit supports defining stimulus sets based on input provided by the subject. This feature can be used, for
example, to present text provided by the subject (e.g., the subject's stated name), or to present only stimuli
selected by the subject on previous trials.

Presenting text entered by the subject
To create a set of items consisting of text entered by the subject, first we'll define an empty item set to store
the items:

<item responseitems>

</item>

Next, we'll create a survey page with textbox items for gathering the respondent's first and last name:

<textbox firstname>

/ caption = "Please enter your first name:"

</textbox>

<textbox lastname>

/ caption = "Please enter your last name:"

</textbox>

<surveypage page1>

/ questions = [1=firstname; 2=lastname]

/ ontrialend =
[item.responseitems.insertitem(textbox.firstname.response, 1)]

/ ontrialend =
[item.responseitems.insertitem(textbox.lastname.response, 2)]

</surveypage>

This is a survey page with two items allowing respondents to enter their first and last names. The ontrialend
attributes contain the commands that actually do the work of adding the names to the responseitems set.
The first ontrialend command adds a new item to responseitems by setting the item property to the response
for the firstname question. The second ontrialend command adds the last name in a similar fashion. Neither
of these commands changes or removes the items that are already in the responseitems item set - they
simply add new items. Using this technique, we can build up item sets of arbitrary length containing
user-supplied content.

Page 119

If we later want to change the first name item to something else (e.g., a nickname), we could do so using the
following command:

<surveypage page2>

/ questions = [1=nickname]

/ ontrialend =
[item.responseitems.setitem(textbox.nickname.response, 1)]

</surveypage>

This time, the ontrialend command assigns the first item in the responseitems set to the middle name. This
time, the command includes the index number "1", which refers specifically to the first item in the set. By
specifying the index number, we can thus change item in that position. If the index number is omitted as in
the first example, a new item is added.

Stimulus elements can use the responseitems element the same way they would use other item elements.
For example:

<text responses>

/ txcolor = (0, 255, 0)

/ position = (25, 25)

/ items = responseitems

</text>

This text element presents the responseitems in the upper left corner of the screen in green.

Text items selected by the participant
In additional to allowing participants to type in new stimuli, it is also possible for them to choose items from a
predetermined list. Imagine we want to create an item set containing three cities the participant has never
visited. We'll store these items in an item set called "cities":

<item cities>

</item>

Next, we'll create a survey page with a checkboxes item with a list of cities for the participant to choose
from:

<checkboxes cities>

/ caption = "Select three of the cities below that you have never
visited:"

/ options = ("Berlin", "London", "Tokyo", "Paris", "Rome", "Sydney",
"New York")

/ range = (3, 3)

</checkboxes>

Page 120

<surveypage page1>

/ questions = [1=cities]

/ ontrialend = [if (checkboxes.cities.checked.1 == true)
item.cities.item = checkboxes.cities.option.1]

/ ontrialend = [if (checkboxes.cities.checked.2 == true)
item.cities.item = checkboxes.cities.option.2]

/ ontrialend = [if (checkboxes.cities.checked.3 == true)
item.cities.item = checkboxes.cities.option.3]

/ ontrialend = [if (checkboxes.cities.checked.4 == true)
item.cities.item = checkboxes.cities.option.4]

/ ontrialend = [if (checkboxes.cities.checked.5 == true)
item.cities.item = checkboxes.cities.option.5]

/ ontrialend = [if (checkboxes.cities.checked.6 == true)
item.cities.item = checkboxes.cities.option.6]

/ ontrialend = [if (checkboxes.cities.checked.7 == true)
item.cities.item = checkboxes.cities.option.7]

</surveypage>

The checkboxes item lists seven cities and uses the range attribute to constrain the number of selections to
3. There are seven ontrialend commands, each of which evaluates whether its corresponding city is checked,
and if so, adds it to the cities item list. The items can then be presented using a text element.

<text responses>

/ items = cities

</text>

Next, define an item element whose items will consist of the picture or text items selected by the subject on
each run of the multiplechoice trial:

<item selecteditems>

/ items = (multiplechoice)

</item>

Each time a multiplechoice trial is run, Inqusit adds the item selected by the subject to the selecteditems
item set. If the multiplechoice trial presented pictures, the selecteditems item element could be presented by
picture elements in the script. If the multiplechoice trial presented text, the selecteditem item element could
be presented by text elements.

Picture items selected by the participant
We'll use the cities example again, but modify it to create an item set of pictures. Again, we'll store these
items in an item set called "cities":

Page 121

<item cities>

</item>

Here is our checkboxes survey item with the list of cities. This time, we've added the optionvalues attribute to
define, for each option, the name of the corresponding jpg file containing a picture of the city. The
checkboxes item will still display the city names next to each the checkbox, not the underlying
optionsvalues.

<checkboxes cities>

/ caption = "Select three of the cities below that you have never
visited:"

/ options = ("Berlin", "London", "Tokyo", "Paris", "Rome", "Sydney",
"New York")

/ optionvalues = ("berlin.jpg", "london.jpg", "tokyo.jpg",
"paris.jpg", "rome.jpg", "sydney.jpg", "newyork.jpg")

/ range = (3, 3)

</checkboxes>

Finally, here is the surveypage that displays the checkboxes item:

<surveypage page1>

/ questions = [1=cities]

/ ontrialend = [if (checkboxes.cities.checked.1 == true)
item.cities.item = checkboxes.cities.optionvalues.1]

/ ontrialend = [if (checkboxes.cities.checked.2 == true)
item.cities.item = checkboxes.cities.optionvalues.2]

/ ontrialend = [if (checkboxes.cities.checked.3 == true)
item.cities.item = checkboxes.cities.optionvalues.3]

/ ontrialend = [if (checkboxes.cities.checked.4 == true)
item.cities.item = checkboxes.cities.optionvalues.4]

/ ontrialend = [if (checkboxes.cities.checked.5 == true)
item.cities.item = checkboxes.cities.optionvalues.5]

/ ontrialend = [if (checkboxes.cities.checked.6 == true)
item.cities.item = checkboxes.cities.optionvalues.6]

/ ontrialend = [if (checkboxes.cities.checked.7 == true)
item.cities.item = checkboxes.cities.optionvalues.7]

</surveypage>

Page 122

For each city listed in the checkboxes item, the corresponding ontrialend command evaluates whether its
checkbox is checked, and if so, adds the optionvalue (i.e., the picture file name) to item set. Now, we can
create a picture element that will display these pictures:

<picture selectedcities>

/ items = cities

</picture>

One additional step is required to make this solution work. To maximize performance, Inquisit loads all
pictures files used by a script at the very beginning as it parses the script. We therefore we need to tell
Inquisit that the script uses these files, or it won't load them. We can do this by creating a picture element
that lists these files as items. We won't actually use this element anywhere in the script - it's just there so
that Inquisit will load the pictures:

<picture dummy>

/ items = ("berlin.jpg", "london.jpg", "tokyo.jpg", "paris.jpg",
"rome.jpg", "sydney.jpg", "newyork.jpg")

</item>

There you have it.

Page 123

How to Present Stimulus Pairs
Often an experiment will require presentation of stimulus pairs. For example, a lexical priming task may have
prime-target pairs such DOCTOR/NURSE that are meant to be presented together on a given trial.

Stimulus pairs are defined in Inquisit by creating two stimulus elements for the first and second members of
each pair, then linking selection of the second with that of the first. For example:

<text firstname>

/ items = ("BILL", "LINDON")

/ select = noreplace

</text>

<text lastname>

/ items = ("CLINTON", "JOHNSON")

/ select = text.firstname.currentindex

</text>

For firstname, select = noreplace means that whenever firstname is presented, it randomly selects without
replacement which specific item is shown. For lastname, select = current(firstname) indicates that whenever
a lastname is presented, it selects the item corresponding to the currently selected firstname item.

The trial below presents both stimuli:

<trial person>

/ stimulustimes = [0 = firstname; 100 = lastname]

/ response = anyresponse

</text>

On each run of this trial, BILL is always followed by CLINTON and LINDON is always followed by JOHNSON.

Page 124

How to Test a Script

The Test Monkey
Inquisit has a built in 'test monkey' who will happily perform even the longest, most tedious experiments in
order to generate sample data. To run the monkey:

a) Open the experiment script in Inquisit.

b) Select the "Monkey" command from the Tools menu.

c) Enter a subject number when prompted and then press OK.

Now, go enjoy a cup of coffee as the monkey runs through the entire experiment without so much as a
complaint. Consult your animal subjects ethics board to determine whether the monkey's informed consent is
required.

Tuning the Test Monkey
You can use the monkey element to control the speed and accuracy with which the monkey responds.

On a given trial, you can also specify the monkeyresponse attribute on a given trial to specify the possible
responses the monkey can randomly select when responding on a given trial.

If the monkeyresponse attribute is not specified, the monkey will randomly select from the responses
specified in the validresponse and correctresponse attributes. The monkeyresponse attribute is thus required
in order to use the monkey on trials that don't specify either of these attributes. For example, you would use
the monkeyresponse attribute on trials that use the isvalidresponse or iscorrectresponse event handler
attributes to identify valid and corred responding using dynamic expressions.

Page 125

How to Debug a Script

Fixing Script Errors
The syntax colorization within the Inquisit editor can be helpful for detecting some problems, such as
misspelled commands, missing quotation marks, or missing close tags.

A deeper level of error detection happens when the script is parsed. The parse phase can be triggered by
selecting the Validate Script command, or by running the entire script or a particular element. During the
parsing phase, Inquisit may detect a variety of errors, including malformed syntax, references to elements
that have not been defined, links to media files or included scripts that it can not locate or load, or file access
errors.

Inquisit will report any script errors detected during the parse phase in the Error window at the bottom of the
screen. Each error reports the specific element and attribute where the error occured, along with a descriptive
message. If you double-click an error, the Inquisit editor will jump to the location of the attribute and element
in the script where the problem lies. Many errors can be fixed by examing the problematic command, reading
the descriptive error message, and making the appropriate changes.

Help on Syntax
For additional information about a given command, place the cursor in the element that caused the error and
press the F1 key to open the reference topic for the element.

The Debugger Watch Window
The Debugger Watch Window halts execution of the script and shows you the current values of every propery
in the script at that point in time. This can be a useful advanced tool for debugging expressions that reference
various property values. For example, if you have an expression in the script comparing two property values,
and the result of the comparison is not what you expect, you can use the Debugger Watch Window to see
what those values actually are as the script is running at the point when the comparison is being made.

There are two ways to open the Debugger Watch Window. You can open it using the following keyboard
shortcut while the script is running.

Press Ctrl+D

You can also call the script.debugbreak() function if you wish to see property values at a particular point in
the script logic.

Test Monkey
The Test Monkey provides a way to quickly produce sample data from your script. You can then analyze the
data file to check whether the structure of the experiment is as expected. For example, you can load the data
into Excel and build pivot tables to check that blocks are run in the expected order, items are randomly
selected at the expected counts, the correct number of trials are run, and that other structural constraints in
the experiment are met.

More information on the Test Monkey is available in the How to Test an Experiment help topic

Page 126

Inquisit Runtime Commands

Aborting an Experiment
Inquisit has special built in commands that allows you to abort the rest of an experiment. This are useful, for
example, when you are testing out a script, discover an error, and wish to end the session so that you can
return to the editor and fix the problem. Note that any data collected up to that point will be saved.

The command for aborting a batch of mulitiple scripts:

 Windows and Mac: Press the Ctrl+A Keys
 iOS, Android, Windows Touch: Swipe down with 4 fingers

The command for aborting a single script is:

 Windows and Mac: Press the Ctrl+Q Keys
 iOS, Android, Windows Touch: Swipe down with 3 fingers

Skipping the Current Block
Inquisit also has a built in command that enable you to skip the current block. This is useful if you are wish to
test a block that occurs later in the script and you don't want to respond to every trial on every preceding
block. To skip the current block, use the following command:

 Windows and Mac: Press the Ctrl+B Keys
 Not supported

Opening the Debugger Watch Window
Inquisit has a Debugger Watch Window that shows you the current values of every propery in the script at
any point while it is running. This can be a useful advanced tool for debugging expressions that reference
various property values. To launch the Debugger Watch Window, use the following command:

 Windows and Mac: Press the Ctrl+D Keys
 iOS: not supported

Page 127

How to Erase Stimuli
By default, Inquisit erases all stimuli presented on a given trial after the subject has responded. Note that you
can prevent a stimulus from being erased at the end of a trial by setting its erase attribute to false.

Some research tasks require that stimuli be presented for a fixed duration, after which it should be removed
from the screen. To erase a stimulus after a fixed duration, you must create a separate 'blank' stimulus
element and then present that blank at the appropriate interval in the stimulus presentation sequence so that
it overwrites the stimulus you wish to erase.

There are a number of ways to create a blank stimulus. The easiest is to create a rectangular shape element,
set its size large enough to cover the stimulus you wish to erase, and then set its color to the background
color of the screen.

If you are erasing text items of various sizes, it may make sense to define a second text element that uses
the same set of items, sets the select attribute as linked with the to-be-erased stimulus, but sets the txcolor
and txbgcolor attributes to the background color of the screen. Each time this blank text stimulus is
presented, it will present a erasing rectangle that is exactly the same size of the original text stimulus.

Page 128

How to Analyze Recorded Voice Responses
Many reaction time tasks are best administered by requiring participants to make verbal responses. Consider
the classic Stroop task, for example, whereby the respondent is required to identify the color of the ink in
which color names are printed. Although it's possible to demonstrate the Stroop effect using key or button
presses, the effect is much more evident with verbal responses. Unfortunately, analyzing the accuracy of
verbal responses typically requires the tedious and time-consuming process of transcribing hundreds or even
thousands of recorded vocalizations. Given the amount of labor involved, many researchers avoid verbal
response tasks altogether in favor of procedures that can be completely computer automated.

Inquisit removes the tedium of transcribing verbal responses by leveraging speech recognition software. With
Inquisit, spoken responses can be automatically analyzed in real time, or you can record responses and then
later analyze them with the speech engine.

To analyze the content of spoken responses in real time, simply set the inputdevice attribute to speech. With
this option, Inquisit activates the speech engine on every voice trial, listens for a response, and then attempts
to identify the utterance from a list of possible responses that you specify. The identified response is
recorded directly into the data file. In cases where the response could not be identified, Inquisit records a "?"
instead. The advantages of this option are that a) the utterance is immediately available in the data file for
analysis, and b) Inquisit can determine whether a correct or incorrect response was given for purposes of
providing tracking performance and providing error feedback. The disadvantages of speech option are that the
speech engine may occassionally misidentify or fail to recognize valid utterances. It also may impose a
perceptible delay between the time an utterance is made and the time it is recognized (importantly, this delay
does not affect the measurement of response latency of spoken responses).

To record responses for subsequent speech recognition analysis, set the inputdevice attribute to voicerecord.
With this option, Inquisit listens for a response on every trial, and when it picks up incoming sound, that
sound is recorded to a wav file. Separate wave files are recorded for each trial, and files are named in a way
that allows you to match the file to the particular trial of the particular session for the particular subject that
made the response. When you are ready to analyze the data, Inquisit provides a handy tool that "listens" to
each wav file, identifies the spoken content, and saves the results to a tab delimited file.

The "Analyze Recorded Responses" Tool
To analyze the recorded responses, click Inquisit's Tools menu, and select the "Analyze Recorded
Responses..." command. This will open the following window:

Page 129

First, you must specify the folder containing the recorded wav files. You will find these files in a subfolder
called "voicerecord" located in the folder containing your script file.

Next, you can optionally specify the complete list of valid utterances so that the engine knows what words to
listen for. If your task has a fixed set of valid responses, specifying them here will greatly improve the
recognition accuracy of the engine. If you do not specify valid responses, the engine treats the entire lexicon
as a potentially valid response, and recognition accuracy suffers accordingly.

To start the analysis, click the Analyze button. Once all the files have been analyzed, each wav file and its
recognition result appear in the list below. If the engine could not identify the response, a "?" appears. To
listen to any of the wav files, simply double-click the file in the results list and it will play (make sure audio is
configured correctly, speakers are turned on, and the volume is turned up). By listening to the files, you can
double-check the engine's accuracy or try to identify an utterance that the engine could not.

Finally, you can save the results to a tab-delimited file by clicking the "Save..." button. The file will contain
two columns of data for the file name and recognition result respectively. The saved data can then be inserted
into the main data file using the command language and macros of your stats software, or using good old
fashioned Filter, Sort, Copy, and Paste with a spreadsheet program like Excel.

Page 130

How to Adjust the Response Window
The temporal characteristics of the response window may be adjusted from block to block depending on a
given subject's performance. The way the script specifies the response window method also determines the
adjustment procedure.

The default window adjustment procedure is:

The response window is moved back 33 ms for subsequent blocks if

1. the percent of correct responses for the block <= 55%.
2. the percent of correct responses for the block <= 65% and mean latency is over 100 ms greater

than the current window center.
The response window is moved forward 33 ms for subsequent blocks if

1. the percent of correct responses for the block >= 80% and mean latency is no more than 100 ms
greater than the current window center.

Using the <response> element, it is possible to customize various aspects of the window adjustment
procedure, including conditions for incrementing the window center (moving it back), conditions for
decrementing the window center (moving it forward), the increment and decrement amounts, the minimum
and maximum window center values, and whether to base the adjustment algorithm on mean or median
latency.

Response Window for Blocks
The response window procedure can be specified at the block level, as in the following:

<block myblock>

/ responsemode = window(100, 100, windowstim)

</block>

In this example, adjustment of the window center for myblock is independent of the subject's performance on
different blocks defined in the script. Each adjustment to the response window of myblock affects only
subsequent runs of myblock and is unaffected by performance on blocks with other names.

Response Window for Expt
The response window procedure can be specified at the expt level, as in the following:

<expt>

/ responsemode = window(100, 100, windowstim)

</expt>

In this case, the scope of the window center is the experiment. All blocks within the experiment will share the
experiment's window center, with the exception of blocks that have the response window explicitly defined for
themselves (see above). Each block that uses the shared experiment window center may adjust that center
based on the subject's performance, and subsequent blocks in the experiment will use the adjusted window
center.

Response Window for the Response Element

Page 131

The response window procedure can also be specified within a response element, as in the following:

<response myresponse>

/ mode = window

/ rwhitduration = 200

/ rwhitstimulus = hitstim

/ rwcenter = 400

/ rwwidth = 300

/ rwstimulus = windstim

</response>

In this case, the myresponse element has its own response window center, and all block or expt elements
that specify "/response = myresponse" will share that window center. This window center may be adjusted
based on performance of any block that uses myresponse, and the adjusted window center will be used by
subsequent blocks that use myresponse.

Page 132

How to Control Response Timing
By default, Inquisit measures response latency as the interval beginning at the onset of the last stimlus frame
of the trial and ending when the subject issues a valid response. Responses made before the onset of the
last stimulus frame are ignored.

The beginning of the response interval can be customized using the beginresponsetime or
beginresponseframe attributes. Beginresponsetime specifies how many milliseconds after the onset of the
first frame the response interval should begin. Responseframe specifies how many frames after the first frame
the response interval should begin.

For example, in the following trial, the response interval begins when the first stimulus, "prime", is presented.

<trial mytrial>

/ stimulusframes=[1=prime; 10=target]

/ beginresponseframe=1

</trial>

Page 133

How to Control Trial Duration and
Inter-Trial Intervals
Inquisit provides a number of commands for controlling the timing of various segments of a trial. A trial can be
thought of as a sequence of four segments, illustrated in the following diagram:

Attributes

pretrialpause

Pauses for the specified duration at the begining of a trial, prior to stimulus presentation. In
addition to providing a general means of controlling inter-trial intervals, the PretrialPause is
useful for experiments that present large numbers of memory intensive stimuli on a given trial.
Depending on the size of the stimuli and the speed of the hardware, stimulus preparation may
add notable lengths of time to the beginning of the trial. Furthermore, stimulus preparation
time may vary from trial to trial, in which case varying durations may be added to the
beginning of the trials. However, if a PretrialPause interval is specified, Inquisit uses this time
to prepare the stimulus presentation sequence. By specifying a PretrialPause duration long
enough for stimulus preparation to complete, the experimenter can impose a constant and
predictable duration at the beginning of each trial.

numframes Specifies the number of stimulus presentations frames. A frame corresponds to a single
vertical retrace interval of the monitor.

response

By setting this attribute to a timeout procedure (e.g., /response = timeout(1000)), it specifies
the maximum duration for Inquisit to wait for the subject to respond. If no response occurs
during within this duration, Inquisit finishes up the trial, waits for the postrialpause to
complete, and moves onto the next.

timeout Specifies the maximum duration of a trial, from the very beginning of the trial to the end, not
including the posttrialpause.

Page 134

posttrialpause

Pauses for the specified duration at the end of each trial after the subject has responded. In
addition to providing a general means of controlling inter-trial intervals, the PosttrialPause is
useful for experiments that present large numbers of memory intensive stimuli on a given trial.
Depending on the size of the stimuli and the speed of the hardware, the process of cleaning
up a stimulus presentation sequence (i.e., removing stimuli from memory) may add notable
lengths of time to the end of the trial. Furthermore, stimulus cleanup time may vary from trial
to trial, in which case varying durations may be added to the ends of the trials. However, if a
PosttrialPause interval is specified, Inquisit uses this time to cleanup the stimulus
presentation sequence. By specifying a PosttrialPause duration long enough for stimulus
cleanup to complete, the experimenter can impose a constant and predictable duration at the
end of each trial.

trialduration

Specifies the absolute duration of a trial, from beginning to end, including the posttrialpause. If
the subject responds quickly, the posttrialpause interval is lengthened to fill out the remaining
time in the duration. If the subject does not respond before the duration, the trial is terminated
and the next trial begins.

Page 135

How to Setup and Use Setup Speech
Recognition
The speech recognition functionality also requires that you have a sound card and a microphone. Almost any
sound card will work for speech recognition and text-to-speech. The quality of the microphone is a large
determinant of speech recognition accuracy. Use a close-talk or headset microphone that is held close to the
mouth or a medium-distance microphone that rests on the computer 30 to 60 centimeters away from the
speaker. A headset microphone is needed for noisy environments. Speech recognition works best with
close-talk microphones.

Windows XP
Inquisit leverages the Microsoft Speech Recognition Engine to allow measurement of both latency and
accuracy of spoken responses. To use Inquisit's speech recognition capabilities, you must download and
install version 5.1 of the Microsoft Speech Engine.

Windows Vista, 7, and 8
The speech engine comes preinstalled on these versions of Windows.

All Versions of Windows
For optimal performance, run the Microphone Wizard to adjust microphone input to appropriate levels and the
Speech Recognition Wizard to tune the engine to your voice and dialect. You can find both Wizards under
the Speech Recognition menu within Inquisit's Tools menu.

Mac OSX
Inquisit leverages the native speech recognition engine that ships with Mac OSX. There are no additional
installations steps required.

Page 136

http://www.millisecond.com/download/speech.aspx
http://www.millisecond.com/download/speech.aspx

How to Present TTL Signals Through the
Parallel Port (Windows and Mac)
Inquisit can trigger external devices such as EEG's and pidgeon feeders by sending these devices TTL
(Transistor-Transistor Logic) signals through the computer's LPT (parallel) port. Inquisit allows precise control
over the the duration and state of the signals, as well as syncronization of signals with visual and audio
stimuli presented on a trial.

A TTL signal is a simple 8 bit value that is physically represented as the sequence of high and low voltage
states in pins 2 through 9 of the parallel port at a given point in time.

In Inquisit's scripting language, parallel port signals are defined and presented much the same way as visual
and audio stimuli. as the signal is represented as an 8 character sequence of 0's and 1's, with 0
corresponding to low and 1 corresponding to high. Port signals are defined within Inquisit using the port
element, which can contain 1 or more items that define a specific 8-bit sequence. For example, the following
port stimulus consists of a single 8 bit sequence "10101010":

<port mysignal>

/ port = lpt1

/ subport = data

/ items = ("10101010")

</port>

The port attribute specifies which of the two parallel ports to use, LPT1 or LPT2.

The subport attribute specifies whether to use the Data or Control register of the parallel port.

The items attribute specifies a sequene of 8 bits to send to the port.

This port signal can then be presented along with other trial stimuli:

<trial mytrial>

...
/ stimulusframes = [1 = mypicture, mysignal]

 ...

</trial>

The standard parallel port consists of three address registers commonly referred to as the Data, Status and
Control registers. The Data and Control registers are capable of sending output signals. Inquisit supports
writing to either the Data and Control registers by defining the subport attribute of the port element. The
Status register, on the other hand, supports input signals. Inquisit supports reading from Status register (see
inputdevice for details).

TTL signals are specified as a sequence of 8 bits (i.e., a byte of information). The following charts show the
mappings between each binary digit specified in the item (e.g., "01001001"), the bit, and their respective
DB25 pins for signals send to the Data and Control registers, respectively:

Data Register

Page 137

Item Bit DB25 Pin
1 7 9
2 6 8
3 5 7
4 4 6
5 3 5
6 2 4
7 1 3
8 0 2

Control Register
1 7 not used
2 6 not used
3 5 not used
4 4 not used
5 3 17
6 2 16 (logic reversed)
7 1 14
8 0 1
Inquisit's parallel port triggering is a generic mechanism for sending any 8-bit TTL signal to any external
device capable of receiving. The duration and content of the signals sent by an experiment depends upon the
specific device that is listening for those signals. Consult the documentation for your device to understand
what kind of signals it expects.

Inquisit includes a parallel port monitoring tool that allows ad hoc sending of TTL signals to the Data and
Control registers of either of two parallel ports (LPT1 or LPT2).

Inquisit can also read signals from the parallel port sent from other devices using the pretrialsignal and
posttrialsignal commands.

Parallel Port Support for Mac
Although parallel ports have long been sole province of Windows-based PCs, Inquisit extends support to the
Mac OS X operating system. A parallel port can be connected to to your Mac Pro, Macbook Pro, or iMac,
using Mac's Thunderbolt connector protocal. Specifically, a ExpressCard PCIe parallel port card can be
connected to a Thunderbolt to PCIe adapter (e.g. Sonnet Echo Pro ExpressCard PCIe 2.0 Thundebolt
Adapter), which can then be plugged into a Mac's Thunderbolt port. Additionally, a standard PCI or PCIe
parallel port card can be plugged in directly to the PCI or PCIe slot on a Mac Pro's motherboard.

Importantly, Inquisit is compatible with single function parallel port cards only. Multi-function cards such as
those with multiple parallel ports or a mix of parallel and serial ports are not supported.

Page 138

How to Use the Parallel Port Monitor Tool
(Windows and Mac)
Inquisit can communicate with external hardware such as fMRI, EEG, and Eye Tracker measurement
systems via TTL signals sent via parallel port. Inquisit supports parallel port communication on both Mac and
Windows computers. Inquisit's Parallel Port Monitor provides a handy tool for testing whether parallel port
signal values are properly sent and received.

The Parallel Port Monitor tool can be launched by selecting the "Parallel Port Monitor..." command from
Inquisit's "Tool" menu.

The Parallel Port Monitor tool allows you to send TTL signals through the parallel port of your choice, as well
as monitor incoming TTL signals send from external devices. The parallel port can be useful for testing what
kinds of TTL signals are sent or recognized by external devices such as EEGs amplifiers.

Inquisit recognizes TTL input to the Status and Data registers. When the "Receive" button is pressed, the
Parallel Port Monitor tool displays both the byte value of the current input TTL signal as well as the high/low
status of each individual pin. A checked box indicates high; unchecked indicates low.

Inquisit can send TTL input to the Data or Control registers. To send a signal, check the box for pin that
should be high, then press the "Send" button. The corresponding pins will be set high or low and will remain
in that state until another signal is sent.

How to Log Parallel Port Signals
The Parallel Port monitor also supports logging of parallel port input signals over time. To achieve maximum
timing resolution, the logging tool boosts it's thread and process priorities and polls the parallel port state,
logging the time of any changes. Results are saved in tab-delimited format that can be loaded into Inquisit
and other data analysis tools such as Excel, SPSS, etc.

To log parallel port port input, simply click the Log... button on the Parallel Port Monitor. To start recording
immediately, press the Record button. You can define a parallel port pin/bit as a trigger so that recording will
start when the value of the selected bit transitions to high (bit value 1). The logging tool also enables you to
specify the path of the log data file and the duration of time for signals to be logged.

Parallel Port Support for Mac
Although parallel ports have long been sole province of Windows-based PCs, Inquisit extends support to the
Mac OS X operating system. A parallel port can be connected to to your Mac Pro, Macbook Pro, or iMac,
using Mac's Thunderbolt connector protocal. Specifically, a ExpressCard PCIe parallel port card can be
connected to a Thunderbolt to PCIe adapter (e.g. Sonnet Echo Pro ExpressCard PCIe 2.0 Thundebolt
Adapter), which can then be plugged into a Mac's Thunderbolt port. Additionally, a standard PCI or PCIe
parallel port card can be plugged in directly to the PCI or PCIe slot on a Mac Pro's motherboard.

Importantly, Inquisit is compatible with single function parallel port cards only. Multi-function cards such as
those with multiple parallel ports or a mix of parallel and serial ports are not supported.

Page 139

Using Cedrus RB Series and Lumina
Response Boxes with Inquisit
Inquisit has built in support for interoperating with Cedrus RB-Series and Lumina response pads and other
devices that use Cedrus' XID communication protocol. Cedrus response pads can be used with Inquisit on
both Windows and Mac platforms.

RB-x30 Response Boxes (RB-430, RB-530, RB-630,
and RB-830), Lumina response pads
The RB-x30 devices are the third and, as of the time this article was written, latest generation of response
boxes from Cedrus. These and the Lumina response pads use a communication protocol called XID that
defines a set of commands for sending and retrieving data to and from the device. Inquisit uses this protocol
to automatically (i.e., no manual configuration) connect to the device, and to query the device for responses
and response latencies as recorded by the device's built-in timer.

The first step in using the response device is to plug it into a USB port on your computer and install the
device driver (which you can download from Cedrus' web site).

Once the device is plugged in, you can communicate with it in Inquisit by making a few simple modifications
to your task script. For example, if you are modifying a script that is configured to use the keyboard for
measuring responses (either inputdevice is set to keyboard or it's unspecified, in which case Inquisit defaults
to the keyboard), you simply need to set inputdevice to XID, either as the default for the entire script:

<defaults>

/ inputdevice = XID

</defaults>

Or specifically for a given trial:

<trial target>

/ inputdevice = XID

</trial>

You will also need to configure your script to handle the specific numeric values returned by the buttons on
the device. To discover the button values, download and run the response pad sample from our Cedrus page.
This is a great sample for scripting against an XID response device, and it will display the numeric values of
any button you press. Once you know the values, you can update your script to treat these values as valid or
correct responses:

<trial target>

Page 140

http://www.millisecond.com/download/library/Cedrus/

/ inputdevice = XID

/ validresponse = (2, 6)

/ correctresponse = (6)

</trial>

If you'd like to access advanced properties of the response pad such as the response time as measured by
the onboard timer or the id, port, or action of the last-pressed button, you can define an xid element as
follows:

<xid rb>

/ product = responsepad

</xid>

<trial target>

/ inputdevice = XID

/ isvalidresponse = [xid.rb.lasteventbutton == 4 ||
xid.rb.lasteventbutton == 5;]

/ correctresponse = [xid.rb.lasteventbutton == 4 &&
xid.rb.lastlatency < 1000;]

</trial>

Troubleshooting
If Inquisit suddenly stops responding to button presses, try unplugging your device and then plugging it back
in. We've found ourselves having to do this on occassion.

If you have been unable to get Inquisit to recognize button presses at all, verify the dipswitches on your
device are configured to XID mode. The dipswitches on the back of the response box control the response
mode and baudrate that the device uses to signal the serial port. When the response box is shipped, all four
switches on the device are down by default, which sets the device to XID mode at a baud rate of 115,200.
See below for an illustration. Although Inquisit can use any baud rates supported by the device, we'll just use
with the default setting of 115,200 for the sake of simplicity. If the dipswitches are in different positions,
unplug the response box, return them all to the down position, then plug it back in. Be warned, you must
disconnect your response box from the computer and then reconnect it for dipswitch changes to take effect.

Page 141

Inquisit RB-x20 Response Boxes (RB-420, RB-520,
RB-620, and RB-820)
The RB-x20 devices are the second generation of response boxes from Cedrus. These response boxes
support only the "RB Series" communication mode.

Setting the Dipswitches

The dipswitches on the back of the response box control, among other things, the baudrate that the device
uses to signal the serial port. When the box is shipped, all four switches on the device are down by default,
which corresponds to a baud rate of 19200 (see the image below). Although Inquisit supports any baud rate,
we'll just use the default setting of 19200 to keep things simple. If the switches are not all in the down
position, unplug your device from the computer, flip them all down, and then plug it back in.

Configuring the Serial Port

Once all four dipswitches have been set to the down position, the serial port must be configured with the
compatible settings. To configure the port, use the Windows Device Manager applet (on Windows XP, open
the Control Panel, then the System applet, click on the Hardware tab, and click the Device Manager button).
Expand the Ports node on the tree, right click on the COM port that your response box is plugged into, and
select the Properties command. This will open the window pictured below, which allows you to configure the
port. For the RB-x20 devices with the dipswitches in the down position, the port should set to the following:

If you haven't already, plug your device into the serial port of you computer. If your computer has multiple

Page 142

serial ports (COM1, COM2, etc.), make sure that you connect the device to the same port that you
configured in the previous step.

Page 143

Using Cedrus StimTracker with Inquisit
Inquisit has built in support for interoperating with Cedrus StimTracker devices. The StimTracker provides an
alternative to the parallel or serial port for Inquisit to communicate with external neurophysiological
measurement systems and send markers of significant events during stimulus presentation. Inquisit can
interoperate with a StimTracker on both Windows and Mac platforms.

The first step in using the StimTracker is to plug it into a USB port on your computer and install the device
driver (which you can download from Cedrus' web site).

Once the device is plugged in, you can interface with it in Inquisit as if it were a type of stimulus. In other
words, you can send signals to the device using syntax similar to that which displays pictures or text or
plays a sound. By presenting the StimTracker signals at the same time as other stimuli, the StimTracker can
relay the signals to an ERP of fMRI system in order to mark stimulus onsets.

To signal a StimTracker, you will need to define xid elements. The following xid element has a single item
with a value of 0 (all TTL channels set to low):

<xid stblank>

/ product = stimtracker

/ items = (0)

</xid>

The following two xid elements are functionally identical, each containing 3 signals with values 1, 2, and 4.
The two elements illustrate the two different ways in which signal values can be defined - as integers or as
binary strings.

On each trial, the select attribute for the xid elements determines which signal is sent on a given trial. In both
cases, selection is linked to the selected item in the text element named "letters". The letters text element
selects randomly without replacement from items "A", "B", and "C". The xid elements select the
corresponding values. Thus, when "A" is selected, xid value 1 is selected. When "B" is selected, xid value 2
is selected. When "C" is selected, xid value 4 is selected.

<xid stsignalint>

/ product = stimtracker

/ items = (1, 2, 4)

/ select = current(letters)

</xid>

<xid stsignalbin>

/ product = stimtracker

Page 144

/ items = ("00000001", "00000010", "00000100")

/ select = current(letters)

</xid>

<text letters>

/ items = ("A", "B", "C")

/ select = noreplace

</text>

The following xid element defines a Lumina fMRI response pad that is also plugged into the presentation
computer.

<xid rb>

/ product = lumina

</xid>

The following trial demonstrates how to present the signals and text as well as record the response from the
Lumina reponse pad. The trial presents a signal that is synchronized to the onset of the text stimulus. The
signal is reset to 0 after 3 vertical retrace intervals (50 milliseconds on a 60hz monitor). Note that
pretrialsignal is defined so that the trial waits for a signal value of 1 from the parallel port before running. This
is handy for synchronizing trials on the presentation machine with fMRI recording blocks.

<trial target>

/ pretrialsignal = (LPT1, 1)

/ stimulusframes = [1 = letters,stsignalint; 4=stblank]

/ inputdevice = xid(rb)

/ validresponse = (4)

</trial>

Page 145

Record Responses from a Serial Response
Box
Inquisit supports obtaining and measuring responses from serial port devices such as serial response boxes
and voice key microphones (Inquisit also supports voice key and speech recognition using any PC
microphone). Inquisit has generic serial port cababilities that can be used to interact with many devices. In
addition, Inquisit also has special capabilities for interacting with Cedrus' XID response boxes, which are
described in detail below.

Configuring the serial port
Most devices require the serial port to be configured with specific settings in order to function properly.
Settings include the port's baud rate, the number of bits in each chunk of data, parity, and flow control.
Consult the manual for your device for the appropriate COM port settings.

To configure the port, use the Windows Device Manager applet (on Windows XP, open the Control Panel,
then the System applet, click on the Hardware tab, and click the Device Manager button). Expand the Ports
node on the tree, right click on the COM port you wish to configure, and select the Properties command. This
will open the following Window, which allows you to configure the port. If you are using an RB x30 series
device, the settings should be as follows:

Note that the RB x30 series of response pads have a set of dip switches on the back that allow you to
configure the device to use a 9600 or 19200 baud rate. Be sure to set the "bits per second" option in the
above window to whichever of these two values the dip switches are configured to use.

Page 146

Inquisit commands for serial port input
The Inquisit commands for using a serial port device are very similar to those used for other response devices
such as a keyboard, mouse, or joystick. The inputdevice command should be set to "com1", "com2",
"com3", ... depending upon which port number the device is plugged into on your PC. The inputdevice can
both be set globally for all trials in an experiment by using the <defaults> element:

<defaults>

/ inputdevice = com1

</defaults>

The inputdevice can also be set on a trial by trial basis as follows (trial settings override the default settings):

<trial mytrial>

/ inputdevice = com2

/ validresponse = (128, 8)

/ correctresponse = (8)

</trial>

Next, define the valid and correct responses for that trial. Inquisit treats each byte of data sent by the device
as a separate response whose values range from 0 to 255. Correct and valid responses must therefore be an
integer within this range. The exact value sent by a particular device, or by a given button on a device, is
determined by the device itself. To determine the value corresponding to a particular response on a serial port
device, consult the documentation for that device, or run a series of trials with "responsemode=anyresponse".
Under this mode, Inquisit will treat any response from the device as valid and will record the value for each
response in the data file. You can then consult the data file to determine the value for each response.

Using Cedrus XID-compatible response boxes with
Inquisit
Cedrus' new line of RB and Lumina response boxes include a built in timer that can be used to measure
response latencies. The response pad measures the participant's reaction using it's own hardware and then
reports a time stamped response to the computer. This capability is useful when running computationally
intensive trials such as video presentation that could affect the computer's ability to provide accurate timing.

Taking advantage of an XID response box's on board timer is easy. There is no port configuration required.
Just set the inputdevice command to "xid1", "xid2", "xid2", ... depending on which serial port number the
device is plugged into. That's all there is to it. Inquisit will now record response latencies using the device's
timer rather than that of the computer.

Using Current Design, Inc. fORP response devices with
Inquisit
Inquisit is also compatible with fORP response devices by Current Design, Inc. These devices plug in through
a USB port and can be configured to register as a keyboard or joystick device. Inquisit can thus interact with
them as if they were a regular keyboard or joystick (i.e., by setting inputdevice equal to "keyboard" or
"joystick").

Page 147

How to Run an Inquisit 6 Experiment on the
Web
Inquisit 6 Web allows you to launch your experiments directly from a web page. If you have purchased a web
license, you have the option of launching expeirments from your own web site or from the millisecond.com
web site. In either case, data are saved by default to the millisecond.com data service where you can login
and download the data files.

If you haven't yet purchased a web license, you can still evaluate Inquisit 6 Web by setting up an experiment
on your own web server. When evaluating Inquisit, you can launch and run scripts as normal, but the data will
not be saved.

Click here for more information on registering Inquisit 6 Lab. Click here for more information on registering
Inquisit 6 Web.

Publishing Inquisit scripts on millisecond.com
Hosting your scripts on millisecond.com is the easiest option for those without experience creating and
administering web sites. For those with basic web development skills, this option also includes some support
for customizing the launch web page and subject number assignment method. To publish a script on
millisecond.com:

1. Write and test your Inquisit script using the Inquisit 6 Lab editor and tools.
2. Open your web browser and navigate to the millisecond.com web site.
3. Select "My Account" from the menu and click the "Register Inquisit Web Scripts" menu item. If

you are not already logged into the site, you will be prompted for your user name and password.
4. Under the "Register Web Scripts" section, click the "Register New Script" link. This will launch

the Inquisit Web Script Wizard
5. The first page of the wizard asks whether you wish to host the experiment on millisecond.com or

on your own web server. Select the millisecond.com option. The click the "Browse..." button and
select your script file from your local computer. Click next once you have specified the script file.

6. On the next page you can upload additional files used by the script such as pictures and video.
7. Next, select whether you wish to use Inquisit's automatically generated launch page or your own

custom web page. The subsequent steps in the wizard allow you specify the title, instructions,
and how subject id numbers should be generated and assigned to subjects.

8. When you are done, click the Finish button. That's it, your experiment is now online. You can
browse to the launch page using the following url:

http://research.millisecond.com/[username]/[scriptfilename].web

where [username] is your user id and [scriptfilename] is the original filename of your script.
9. Click the "Start" link to launch your experiment.

Publishing Inquisit scripts on your own web server
Hosting experiments on your own server is an easy if you have access to a web server. To deploy an Inquisit
experiment to your web server, follow these steps:

1. Write and test your Inquisit script using the Inquisit 6 Lab editor and tools, or download a script
from the Inquisit Task Library.

2. Navigate to your web scripts page at http://www.millisecond.com/myaccount/webscripts.aspx.
3. If the status of your web license is "pending", start your web license by clicking the "Start Now"

link.
4. Click the "Register New Script" link to launch the registration wizard and follow the steps in the

wizard.

Page 148

http://www.millisecond.com/purchasedesktop.aspx
http://www.millisecond.com/purchaseweb.aspx
http://www.millisecond.com/download/library/
http://research.millisecond.com/[username]/[scriptfilename].web
http://www.millisecond.com/myaccount/webscripts.aspx.

5. On the first page of the wizard, select the option to host the experiment on your own server, and
enter the full url to the script file on your server.

6. Continue through the wizard specifying the options you'd like for the launch page.
7. On the final Summary page of the wizard, click the "Download Launch Page" button and save the

html page to your computer. Then click the Finish button.
8. Upload your script file and the launch page created above to the location on your web server that

you specified when registering the script. If you script uses picture or other media files, be sure to
upload those as well.

9. Direct participants to the launch web page to start the experiment.

Page 149

How to Combine Multiple Data Files into a
Single File
Depending on the configuration of the data and summarydata elements in your script, and whether you are
saving the data locally or to a remote server, Inquisit may record data from all participants to a single file, or it
may record data from each participant to a separate file.

If the data is saved to separate files, you can easily combine them into a single file that can be loaded into
SPSS, Excel, or any other stats program for analysis. To combine data from multiple data files, perform the
following steps:

1. Start the Inquisit application on your PC or Mac
2. Select the Merge Data Files command from the File menu
3. Browse to the folder containing your data files
4. Hold down the Shift key and select all of the files to be merged
5. Click the Open button - you should see the data from all of the selected files combined in the

data editor
6. Select the Save command from the File menu to save the merged data

The data are saved in a non-proprietary tab-delimited text format that can be loaded into your statistics
program of choice. Consult the documentation of your data analysis software for instructions on importing
tab-delimited text.

Page 150

How to do Conditional Branching with
Inquisit
Inquisit provides several attributes that enable an experimental procedure to dynamically change or adapt
based on the subject's performance.

Branch Attribute
The most powerful attribute for conditional logic is the branch attribute. The branch attribute can be defined at
the level of the trial (including specialized trials such as likert, openended, or block. The attribute allows you
to specify which trials or blocks to run next based on performance. Branching is useful in a variety of
circumstances:

 Repeating a task until the subject makes ten correct responses in a row.
 Running one of two tasks depending upon the median latency on a previous task.
 Running a minimum of 10 and a maximum of 50 trials in a block and moving onto the next block if

the average response latency rises above 1000 milliseconds.
The syntax of the attribute is as follows:

/ branch = [if (<boolean expression>)nextevent]

where <boolean expression> is an expression that evaluates to true or false, and nextevent is the
trial or block that should be run if the boolean expression is true. To specify that no branching should occur if
a particular condition is true, "0" can be specified as the next event.

Multiple branches may be defined for a given element. If the conditions of multiple branches are true, then the
first branch in the list wins.

Skip Attribute
Another useful attribute for conditional logic is the skip attribute. Like the branch attribute, skip can be
defined at the level of . The attribute allows you to specify conditions under which which the trial or block
should be skipped. The syntax of the attribute is as follows:

/ skip = [<boolean expression>]

where <boolean expression> is an expression that evaluates to true or false. Multiple skip conditions
may be defined for a given element. If any of the skip conditions of are true, this event is skipped. Otherwise,
it runs as normal.

Responsetrial Attribute
The responsetrial attribute provides a convenient way to chain together trials based on which response the
subject made. For example:

 Following up incorrect responses with a study trial.
 Creating a questionnaire that includes follow up questions only if a particular response is given.

Note that with Inquisit 6, the branch attribute includes all of the functionality of the responsetrial, and also
includes functionality not supported by responsetrial.

Stop Attribute

Page 151

The stop attribute aborts the remainder of the trials in a block if the subject's peformance meets the specified
condition. This is useful in a variety of situations:

 Aborting a task if the percentage of correct responses drops below a threshold.
 Aborting a task if an incorrect response is given.
 Aborting a task after a maximum number of trials has been run.

Page 152

Running Sequences of Inquisit Scripts and
Other Applications
A single experiment does not necessarily fit into a single Inquisit script. In many cases it may be necessary
to collect data using a combination of different Inquisit scripts, or even a combination of different data
collection programs. Ideally, the different scripts and programs would run as a single, seamless sequence of
tasks requiring no manual intervention from the researcher. This article discusses approaches to achieve this.

Using the Inquisit Batch Element
The Inquisit language provides a simple facility for stringing together multiple scripts into a single data
collection session, the batch element. The batch element allows you to specify a list of script files to run in
order.

<batch>

/ file="SART.iqx"

/ file="WCST.iqx"

/ file="snowshoe.iqx"

</batch>

The batch element must be defined in its own seperate file. To run the batch element, simply open the script
containing the batch element definition in Inquisit and run it as you would run any other script.

This is a very simple approach, but it is also somewhat limited. The batch provides no way to launch other
programs besides Inquisit, and it does not allow you to counterbalance the order in which the scripts are run.
For that, we can rely on Windows batch files.

Using Windows Batch Files
Most researchers assume that running a sequence of data collection programs together requires the ability of
the data collection software to launch other software applications. The applications can thus be daisy-chained
together, with each application launching the next application in the sequence. In fact, this capability isn't
really necessary at all. Everything you need to run batches of applications in sequence is built directly into
the Windows operating system.

Those of you who remember the days of Microsoft DOS are probably familiar with batch files. Batch files are
simple text files, usually named with the "*.bat" file extension, that contain a series of shell commands. Shell
commands can move, copy, and delete files and folders. They can search for files by name or that contain a
particular string of text. They can format a hard drive. Most importantly for our purposes, however, they can
launch applications.

Creating a batch file
Creating a batch file is simple:

1. Click the Windows Start button in the lower left corner, and select "My Computer".
2. Navigate to the C: hard drive by double clicking its icon.
3. Open the "File" menu, select the "New" command, and then select "Text Document".
4. Now, rename the text file you created to "millisecond.bat". Click "OK" when Windows asks you

Page 153

to confirm that the name change.
5. Right click the millisecond.bat file and select the "Edit" command. This will open the file in the

Notepad text editor.
Now we're ready to enter in some commands. For the sake of example, let's assume that our experiment
consists of two Inquisit scripts called "SART.iqx" and "WCST.iqx". We'd like to run the "SART.iqx" script
first, then have the subject play a game of Solitaire to serve as a distractor task before running the
"WCST.iqx" scrip. To launch the "SART.iqx" Inquisit script, we use the same syntax that we would use to
launch the script from the Windows command line shell (hence, the name "shell commands"). The
Inquisit.exe program accepts 3 command line parameters that specify the script to run, the subject id, and
the group id (see here for a list of supported commandline arguments). Thus, the first command in the batch
file is the following:

"C:/Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s 23 - g 1

The first part of the command is the full path to the Inquisit executable file (yours may be different depending
on where you installed Inquisit). The second part specifies the full path of the script to run. The third part is
the subject number (more on this later). Now, on the second line of the file we'll add the command for
launching the Windows Solitaire application, which changes our batch file to the following:

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s 23 -g 1

"C:\Windows\System32\sol.exe"

Finally, we'll add a third line to the file to run the "WCST.iqx" Inquisit script.

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s 23 -g 1

"C:\Windows\System32\sol.exe"

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\WCST.iqx" -s 23 -g 1

Our batch file is almost complete. We can run the file either by double clicking the file with the mouse, or by
opening the Windows command line, moving to our desktop directory, and typing "millisecond.bat". The
batch file first runs "SART.iqx". When that script is complete, it opens the Windows Solitaire application.
When Solitaire is closed, it runs the "WCST.iqx" script in Inquisit. In both cases, it sets the subject number
to "23".

Wait a minute, you may be thinking, won't this batch file set assign "23" to all of my subjects? The answer is
yes. Obviously, that's not very useful as we'll need the ability to specify a unique subject number for each
participant. Fortunately, this isn't difficult because Windows allows you to pass command line parameters to
batch files as well. In our case, we'll want to pass the subject number to the batch file, and have it apply that
number to both Inquisit scripts. We can do that by modifying the batch file as follows:

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s %1 -g 1

"C:\Windows\System32\sol.exe"

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\WCST.iqx" -s %1 -g 1

All we've done is replaced "23" with "%1". Windows will substitute the value of the first command line

Page 154

parameter passed to the batch file wherever it see's a "%1". (All occurences of "%2" would be replaced by
the second parameter, "%3" by the third parameter, and so forth).

We've now got a batch file that will run the three pieces of our experiment in sequence, but what if we want to
counterbalance the order of our Inquisit scripts? No problem, we'll just add some additional logic to our batch
file. Our batch file is going to need a second command line parameter that tells us the order to run the
Inquisit's scripts and an "IF" statement to select the correct order.

IF "%2" == "A" (

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s %1 -g 1

"C:\Windows\System32\sol.exe"

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\WCST.iqx" -s %1 -g 1

)

IF "%2" == "B" (

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\WCST.iqx" -s %1 -g 1

"C:\Windows\System32\sol.exe"

"C:\Program Files\Millisecond Software\Inquisit 6\Inquisit.exe"
"C:\Myscripts\SART.iqx" -s %1 -g 1

)

Now our batch file takes two command line paramters, the first is the subject number and the second (either
"A" or B") indicates which order to run. If the second parameter is neither "A" or "B", neither condition is run.

Running the batch file
Our batch file is now finished, so let's take a look at how to run it. We can no longer double click the file to
run it, because the file is expecting us to supply a subject number as a first parameter. Instead, we'll launch
the batch file from the Windows command line shell. To open the command shell, do the following:

1. Click the Windows Start button in the lower left corner of the screen.
2. Select the "Run..." command.
3. Enter "cmd" in the text input box, and click the "OK" button. This will open a command line

console window.
4. In the console window, type "cd c:\ " to navigate to the root folder of the C drive (if you are using a

different drive, then switch the drive letter).
5. To launch your batch file, type "millisecond.bat 99 A". Note that 99 is the value of the the subject

number and A specifies the first counterbalancing condition. To run the second counterbalancing
condition, you would type "millisecond.bat 99 B"

We now have a batch file that allows us to run multiple Inquisit scripts in counterbalanced order, as well as
running a another software application, "Solitaire". To the participant, these different pieces will seamlessly
flow together. Click here for the completed batch file.

Batch files are a powerful tool that can be used to automate many different aspects of data collection,
including automatically backing up data files to another location when a session is complete, preprocessing
data, or even logging off of Windows after a script is complete to prevent tampering (using the Windows

Page 155

"logoff.exe" program).

Page 156

How to Combine Multiple Scripts
Often a study will involve administering multiple measures to each participant. For example, a study might
administer an IAT, a direct measure of attitude, and a demographic questionnaire, or it may require that 2
different IAT tasks be administered. Inquisit places no constraints on the number of measures that can
included in a single script. However, for a number of reasons, it is often more convenient for each measure to
be defined in its own script. For example, putting all of the measures in a single file may result in a large and
unwieldy script. Also, in many cases each of the measures already exists as a separate script anyway.

Inquisit provides two mechanisms for combining different scripts into a single data collection session, the
<batch> element and the <include> element.

The <batch> Element
The batch element provides a simple way of running a set of scripts in sequence. To use the batch element,
create new empty script file that will contain only the batch element definition and no other commands:

<batch>

/ file = "IAT1.iqx"
/ file = "IAT2.iqx"
/ file = "IAT3.iqx"

</batch>

As you can see from this example, the batch element is really just a list of the script files you wish to run. In
the above example, three IAT scripts are listed, IAT1.iqx, IAT2.iqx, and IAT3.iqx. As you might have guessed,
the batch runs each of these scripts in the order they are listed. To run the batch, simpy open the script file
that contains the batch element definition in Inquisit, and select the Run command from the Experiment
menu. You will be prompted for a subject id, after which each script is run in sequence. Data from each script
are saved in separate files, and the same subject id is used for each file. To use the batch element with
Inquisit Web, simply register the script containing the batch element, and then upload the other scripts to the
web server. With the Web, the data are also saved in different files using the same subject id.

The batch file is very easy to use, but it does have some limitations. Most notably, there is currently no built
in way to randomize the order in which the scripts are run (this is true as of version 3.0.2.0, but the feature is
planned for a future release). If you are using the lab version of Inquisit, you can create multiple batch files,
each of which contains a different ordering, and then randomly assign participants to one of those batch files.
With the Web, this technique would require you to register multiple batch scripts, each of which would require
a separate license. For web experiments requiring randomized ordering, the <include> element described
below is likely a better option.

The <include> Element
The include element provides a convenient way to "copy and paste" elements from one script into another
script without requiring you to go through the hastle of actually copying and pasting. It therefore can serve as
a useful tool for combining measures defined in separate scripts, although typically the scripts will have to be
modified somewhat in order to combine properly.

As an example, let's say we wish to run two IAT measures, randomly varying the order. We could arbitrarily
choose either IAT script and add the include element to it. However, in order to make it easier to reuse this
solution with other scripts (containing IATs or other measures), we'll start with a new empty file and then add
our include definition to it:

Page 157

<include>

/ file = "IAT1.iqx"
/ file = "IAT2.iqx"

</include>

In the above example, we've included two different scripts, IAT1.iqx and IAT2.iqx. The order in which they
are listed doesn't matter. Conceptually, we now have a single virtual script that contains all of the element
definitions contained in IAT1.iqx and IAT2.iqx. If you try to run the script, however, you'll notice a whole bunch of
errors. This is because both scripts use the same names for elements. They also both include definitions of global
elements such as <data>, <defaults>, <values>, <variables>, and <expressions>, so Inquisit will report an error
stating that these elements have been defined more than once.

The first step in resolving these errors is to put a single copy of the global elements in our include script, and
remove these element definitions from both of the IAT scripts. The global elements to add to our include script and
remove from our IAT scripts are as follows:

<defaults>

/ fontstyle = ("Arial", 3.5%)

/ screencolor = (0,0,0)

/ txbgcolor = (0,0,0)

/ txcolor = (255, 255, 255)

/ minimumversion = "3.0.0.0"

</defaults>

<data>

/ columns = [date, time, subject, blockcode, blocknum, trialcode,
trialnum, response,

 correct, latency, stimulusnumber, stimulusitem, expressions.da,
expressions.db,

 expressions.d]

</data>

<monkey>

/ latencydistribution = normal(500, 100)

Page 158

/ percentcorrect = 90

</monkey>

<values>

/ sum1a = 0

/ sum2a = 0

/ sum1b = 0

/ sum2b = 0

/ n1a = 0

/ n2a = 0

/ n1b = 0

/ n2b = 0

/ ss1a = 0

/ ss2a = 0

/ ss1b = 0

/ ss2b = 0

/ magnitude = "unknown"

</values>

<expressions>

/ m1a = values.sum1a

/ values.n1a

/ m2a = values.sum2a

/ values.n2a

/ m1b = values.sum1b

/ values.n1b

/ m2b = values.sum2b

/ values.n2b

Page 159

/ sd1a = sqrt((values.ss1a - (values.n1a * (expressions.m1a *
expressions.m1a))) / (values.n1a - 1))

/ sd2a = sqrt((values.ss2a - (values.n2a * (expressions.m2a *
expressions.m2a))) / (values.n2a - 1))

/ sd1b = sqrt((values.ss1b - (values.n1b * (expressions.m1b *
expressions.m1b))) / (values.n1b - 1))

/ sd2b = sqrt((values.ss2b - (values.n2b * (expressions.m2b *
expressions.m2b))) / (values.n2b - 1))

/ sda = sqrt((((values.n1a - 1) * (expressions.sd1a *
expressions.sd1a) + (values.n2a - 1) * (expressions.sd2a *
expressions.sd2a)) + ((values.n1a + values.n2a) * ((expressions.m1a
- expressions.m2a) * (expressions.m1a - expressions.m2a)) / 4)) /
(values.n1a + values.n2a - 1))

/ sdb = sqrt((((values.n1b - 1) * (expressions.sd1b *
expressions.sd1b) + (values.n2b - 1) * (expressions.sd2b *
expressions.sd2b)) + ((values.n1b + values.n2b) * ((expressions.m1b
- expressions.m2b) * (expressions.m1b - expressions.m2b)) / 4)) /
(values.n1b + values.n2b - 1))

/ da = (m2a - m1a) / expressions.sda / db = (m2b - m1b) /
expressions.sdb

/ d = (expressions.da + expressions.db) / 2

/ preferred = "unknown"

/ notpreferred = "unknown"

</expressions>

The next step is to rename all of the blocks, trials, stimuli, and stimulus items in both IAT scripts so that
they are all unique. In our case, we'll simply add an "iat1" to beginning of all of the names in the IAT1.iqx
script, and "iat2" to the beginning of all of the names in the IAT2.iqx script. Thus, the blocks named
"targetcompatiblepractice" becomes "iat1targetcompatiblepractice" and "iat2targetcompatiblepractice". The
text stimulus named "instructions" becomes "iat1instructions" and "iat2instructions". The trial named
"iat1summary" and "iat2summary". And so forth. Note that you will need to update the parts of each script
that refer to these elements as well. For example, iat1summary trial contains the command / stimulustimes
= [0=summary], which must be changed to / stimulustimes = [0=iat1summary].

The element responsible for running our IATs is the <expt>element, so we'll next need to remove these
element definitions from the IAT scripts and rewrite them in our include script so that they run the blocks of
each of our IATs. After we delete these elements from the IAT scripts, we'll add the following element
definition to the include scripts.

<expt>

/ subjects = (1 of 4)

/ blocks = [1=iat1targetcompatiblepractice; 2=iat1attributepractice;
3=iat1compatibletest1;

Page 160

4=iat1compatibletestinstructions; 5=iat1compatibletest2;
6=iat1targetincompatiblepractice;

7=iat1incompatibletest1; 8=iat1incompatibletestinstructions;
9=iat1incompatibletest2;

10=iat1summary; 11=iat2targetcompatiblepractice;
12=iat2attributepractice; 13=iat2compatibletest1;

14=iat2compatibletestinstructions; 15=iat2compatibletest2;
16=iat2targetincompatiblepractice;

17=iat2incompatibletest1; 18=iat2incompatibletestinstructions;
19=iat2incompatibletest2;

20=iat2summary]

</expt>

The above experiment runs IAT1 first and IAT2 second. In both cases, the compatible parings are applied
before the incompatible parings.

The next expt element reverses the order of the IATs.

<expt>

/ subjects = (2 of 4)

/ blocks = [1=iat2targetcompatiblepractice; 2=iat2attributepractice;
3=iat2compatibletest1;

4=iat2compatibletestinstructions; 5=iat2compatibletest2;
6=iat2targetincompatiblepractice;

7=iat2incompatibletest1; 8=iat2incompatibletestinstructions;
9=iat2incompatibletest2;

10=iat2summary; 11=iat1targetcompatiblepractice;
12=iat1attributepractice; 13=iat1compatibletest1;

14=iat1compatibletestinstructions; 15=iat1compatibletest2;
16=iat1targetincompatiblepractice;

17=iat1incompatibletest1; 18=iat1incompatibletestinstructions;
19=iat1incompatibletest2;

20=iat1summary]

</expt>

The next expt element runs IAT1 first and IAT2 second, but incompatible pairings are used first, and
incompatible pairings second.

<expt>

Page 161

/ subjects = (3 of 4)

/ blocks = [1=iat1targetincompatiblepractice;
2=iat1attributepractice; 3=iat1incompatibletest1;

4=iat1incompatibletestinstructions; 5=iat1inccompatibletest2;
6=iat1targetcompatiblepractice;

7=iat1compatibletest1; 8=iat1compatibletestinstructions;
9=iat1compatibletest2;

10=iat1summary; 11=iat2targetincompatiblepractice;
12=iat2attributepractice; 13=iat2incompatibletest1;

14=iat2incompatibletestinstructions; 15=iat2incompatibletest2;
16=iat2targetcompatiblepractice;

17=iat2compatibletest1; 18=iat2compatibletestinstructions;
19=iat2compatibletest2;

20=iat2summary]

</expt>

Finally, the last expt element runs IAT2 first and IAT1 second, with incompatible pairings first, and
incompatible pairings second.

<expt>

/ subjects = (4 of 4)

/ blocks = [1=iat2targetincompatiblepractice;
2=iat2attributepractice; 3=iat2incompatibletest1;

4=iat2incompatibletestinstructions; 5=iat2inccompatibletest2;
6=iat2targetcompatiblepractice;

7=iat2compatibletest1; 8=iat2compatibletestinstructions;
9=iat2compatibletest2;

10=iat2summary; 11=iat1targetincompatiblepractice;
12=iat1attributepractice; 13=iat1incompatibletest1;

14=iat1incompatibletestinstructions; 15=iat1incompatibletest2;
16=iat1targetcompatiblepractice;

17=iat1compatibletest1; 18=iat1compatibletestinstructions;
19=iat1compatibletest2;

20=iat1summary]

</expt>

Note the /subjects command in each <expt> element determines which conditions a participant is assigned
to based on the subject number. Subjects 1, 5, 9, 13, etc are assigned to the first expt element, 2, 6, 10, 14,
etc. to the second, 3, 7, 11, 15, etc. to the third, and 4, 8, 12, 16, etc. are assigned to the fourth expt

Page 162

element.

To run the script with Inquisit Lab, simply open the script containing the include element and select the Run
command from the Experiment menu. To run it with Inquisit Web, register the script with the include element,
and upoad the other two scripts to the server.

Page 163

How to Interoperate Inquisit Web with
Online Survey Packages such as Qualtrics
and Survey Monkey
Inquisit has full-featured capabilities for designing and administering questionnaires and surveys. In some
cases, however, you may wish to insert an Inquisit cognitive task into an existing survey on another site such
as Qualtrics, Sona, or Survey Monkey. Inquisit Web has features in place to smoothly transition participants
back and forth between Inquist and other web sites. This is accomplished by automatically forwarding
participants between the survey and the Inquisit task. .

Most survey sites allow you to forward participants to another web site after they've completed a survey. You
need only specify the address of your Inquisit launch page as the forwarding url, and your participants will be
automatically forwarded to the Inquisit portion ofthe study when the survey is complete.

Similarly, Inquisit allows you to specify a "Finish Page" where it will forward participants after they've
completed the Inquisit part of the experiment. Here you would specify the address of the survey, and Inquisit
will automatically send participants to that address once the Inquisit task is complete.

Sharing Participant IDs Between Web Sites
To map each participant's survey responses to their Inquisit data, you will need to share a common unique id
for each participant between Inquisit and the survey. This id must be recorded in the data sets from both web
sites so that survey responses can be correlated with Inquisit task outcomes for each participant. There are a
couple of different strategies for sharing ids.

User-Entered Subject IDs
A simple way to share ids between Inquisit and another site is to require the participant to enter some
identifier - for example, a preassigned number or an email address - at the beginning of both the survey and
the Inquisit session. When registering your Inquisit web script on millisecond.com, you can specify that
participants should enter the id in the web script options. Alternatively, you could add the question to the
Inquisit script itself, and then include the response in data to be recorded.

Sending Subject IDs from 3rd Party Site to Inquisit
A less error prone way to share participant ids is to embed the id in the forwarding address between Inquisit
and the other web site. When forwarding from the 3rd party survey to Inquisit, for example, they survey must
dynamically add the id of each participant to the address of the Inquisit study as a "query parameter", which
is a standard mechanism for sharing data between different web sites. Below, we show how to set this up in
Qualtrics. For other platforms, consult their support resources for specific instructions.

Forwarding from Qualtrics to Inquisit
1. Log into Qualtrics and selected your survey project
2. Click the Survey Options button
3. Within Survey Options, go to the Survey Termination section
4. Select the option to Redirect to a full URL
5. Enter the address of the launch page for your Inquisit test, e.g., http://mili2nd.co/aaa
6. Add the query parameter ?subjectid=${e://Field/ResponseID} to the end of the address

If the address of your Inquisit test is "http://mili2nd.co/aaa", for example, the complete forwarding url would
look as follows:

Page 164

http://mili2nd.co/aaa

http://mili2nd.co/aaa?subjectid=${e://Field/ResponseID}

The subjectid part of the URL specifies the name of the query variable. This variable is set to the value
returned by ${e://Field/ResponseID}, which is an example of Qualtrics "Piped Text" that you to insert
variables into a survey. This particular variable inserts each participants unique response id. For example,
when participant with response id "1234" completes the survey, Qualtrics will forward them to the following
url:

http://mili2nd.co/aaa?subjectid=1234

Once participants are forwarded to the Inquisit launch page, Inquisit will extract the value of the subjectid
parameter to get their id, and that id will be recorded in the data.

Forwarding from Sona to Inquisit
See Sona's help topic for sharing participant ids between Sona and Inquisit.

Configuring Inquisit to Receive IDs from a 3rd Party Web Site
To configure Inquisit to read the participant id from the query parameter:

1. Login to the web scripts page in your account
2. Click " edit" next to the web script
3. Select the "Subject IDs" tab on the right of the screen (shown in the figure below).
4. Where it says "Choose how subject ids should be generated, select URLQuery Parameter"
5. Specify the name of parameter (e.g., "subjectid").
6. Click the Save button

That's it. Inquisit will now extract this subject number from the url and record it in the data files.

Returning the Subject ID from Inquisit Back to 3rd Party Site
If you would like to forward the participant back to the survey package at the end of the Inquisit session, you
can specify the url to the survey as the Finish Page when running through the web script registration wizard.
Inquisit will then redirect the participant to that web page at the end of the session.

Page 165

https://www.sona-systems.com/help/inquisit.aspx
https://www.millisecond.com/myaccount/webscripts.aspx
http://mili2nd.co/aaa?subjectid=${e://Field/ResponseID}
http://mili2nd.co/aaa?subjectid=1234

In the above example, Inquisit will forward participants to http://www.surveysrus.com/coolsurvey/part2.html at
the end of the experiment. Do not specify the subject id in the Finish Page url - Inquisit will automatically
append the id using the same query parameter that it found when the subject arrived at the Inquisit launch
page. To continue with the above examples, if the Finish Page is set to
http://www.surveysrus.com/coolsurvey/part2.html, the actual forwarding url for subject 134 would be:

http://www.surveysrus.com/coolsurvey/part2.html?subjectid=134

Your survey package can then retrieve the value of this query parameter to identify which subject is returning
to the survey. Now the survey package can pick up where it left off with this participant.

Sending the Subject ID from Inquisit to 3rd Party Sites
If participants start with the Inquisit session before going to the 3rd party survey site, the subject id can be
explicitly included on the finish page url so that it can be used by the 3rd party site. Using the above
example, the following finish page would include the unique subject id for each participant:

http://www.surveysrus.com/coolsurvey/part2.html?subjectid=<%script.s
ubjectid%>

Add the end of each session, Inquisit will substitute "<%script.subjectid%>" with the actual ids for each of
the subjects.

Page 166

http://www.surveysrus.com/coolsurvey/part2.html
http://www.surveysrus.com/coolsurvey/part2.html,
http://www.surveysrus.com/coolsurvey/part2.html?subjectid=134
http://www.surveysrus.com/coolsurvey/part2.html?subjectid=<%script.s

The Inquisit SR Research Plugin
The Inquisit SR Research Plugin enables integration of Inquisit scripts with gaze point and pupil data from SR
Research's EyeLink eye trackers. The plugin enables gaze-contingent tasks along with sending rich
metadata to the eye tracker to indicate stimulus onsets, stimulus content, areas of interest, trial variables,
participant responses, and custom event markers.

Registering the Plugin
The Inquisit SR Research Plugin includes a 30-day free trial that begins when Inquisit Lab is installed. After
the trial period ends, a license is required to use the plugin. Once you purchase a license, you can register it
by selecting the "SR Research Registration..." command from Inquisit's Help menu. The registration window
will appear with instructions for completing the registration. If you wish to move the license to a new
computer, you can login into https://www.millisecond.com/myaccount/transfer.aspx and submit a transfer
request.

Programming the Plugin
To record and utilize gaze point data from an SR Research eye tracker, you must first declare the eyetracker
element in your script and and set the plugin to "srresearch":

<eyetracker>

/ plugin = "srresearch"

</eyetracker>

When the script is run, Inquisit loads the eye tracker plugin and attempts to locate the SR Research eye
tracker on the network. Once connected, the plugin runs the calibration procedure and then interacts with the
eye tracker according to the commands in the Inquisit script. Recording of gaze point data for a given trial
can be enabled using the datastreams or inputdevice commands on the trial element. For dynamic
procedures that change based on gaze point data, you can programmatically access gaze point data from
the properties of the eyetracker element.

Using gaze data as response input
The plugin enables you to define trials in which gaze is treated as a response similar to a mouse click. For
example, in a parafoveal priming paradigm, participants could be instructed to focus on a fixation point
stimulus. When the eye tracker reports a fixation on the stimulus, it is logged as a response, and the prime
stimulus is presented. As shown in the example below, this is accomplished by setting the inputdevice
attribute to "eyetracker" and defining the fixation stimulus as a "validresponse".

<trial fixation>

/ stimulustimes = [1=fixation]

/ inputdevice = eyetracker

Page 167

https://www.millisecond.com/myaccount/transfer.aspx

/ validresponse = (fixation)

/ branch = [trial.presentstimuli;]

</trial>

Supplementing manual response tasks with gaze point data
Eye tracker data can also be used with task that require other modes of responding such as mouse or
keyboard. For example, imagine you wish to collect gaze point data to uncover how gaze affects memory
performance on the Corsi Block Tapping Test. As show in the example below, this can be accomplished
using the datastreams attribute, which causes the eyetracker to record gaze point data for the duration of the
trial.

<trial showseq>

/ stimulusframes = [1=board,1,2,3,4,5,6,7,8,9]

/ validresponse = (noresponse)

/ trialduration = parameters.tapinterval

/ posttrialpause = parameters.posttapinterval

/ branch = [if(values.tapcount < values.seqlength) trial.showseq
else trial.recallseq]

/ recorddata = false

/ datastreams = eyetracker

/ screencapture = true

</trial>

Sending stimulus data to the eye tracker
Inquisit automatically sends meta data about all visually presented stimuli to the eye tracker without requiring
any special programming. For all visual stimuli, Inquisit notifies the eye tracker of the stimulus onset time and
defines their screen regions as areas of interest. For picture stimuli, Inquisit also sends the file name so the
images can be loaded by Data Viewer into their corresponding screen positions, and gaze points can be
plotted over them. If you wish to replay entire sequences of stimuli in Data Viewer, all stimuli shoudl be
defined as pictures.

If the screencapture attribute is set to true on the current trial, the screen as it appears at the end of the
stimulus presentation sequence is captured to an image file. The name of the file is sent to the eye tracker
and "back dated" to the start of the trial. This enables gaze points to be plotted over the entire screen
(including presented text and shapes) within Data Viewer. Note that since the screen capture is just a static
snapshot of the end result of all stimuli presented by the trial, it does not include temporal information to
support the playback of a trial within Data Viewer. If playback is required, screen capture should be disabled,
and the Inquisit script should present all visual stimuli (text, shapes, etc.) as images using the picture
element.

Page 168

The Eye Tracker Element
 Attributes and properties for the SR Research plugin

Sample Scripts
Sample scripts for the SR Research Plugin can be downloaded from the Millisecond Test Library.

Page 169

http://www.millisecond.com/download/library/srresearch/

The Inquisit Tobii Plugin

Programming the Plugin
To record and utilize gaze point data from a Tobii eye tracker, you must declare the eyetracker element in
your script and and set the plugin to "tobii":

<eyetracker>

/ plugin = "tobii"

</eyetracker>

Once the eyetracker is defined in the script, whenever the script is run Inquisit loads the plugin and attempts
to locate the Tobii eye tracker on the network. Once connected, the plugin recieves and records the stream of
gaze point data from the eye tracker. For dynamic task paradigms that change based on gaze point data,
you can programmatically access gaze point data from the properties of the eyetracker element.

The Eye Tracker Element
 Attributes and properties for the Tobii plugin

Sample Scripts
Sample scripts for the Tobii Plugin can be downloaded from the Millisecond Test Library.

Eyetracker Data Recorded by the Plugin
The Inquisit Tobii Plugin retreives and records the following data from the Tobii eye tracker. For more details
on a given data field, see the Tobii documentation.

date The date at the start of the session.

time The time at the start of the session.

groupid Group id entered for this session.

subjectid Subject id entered for this session.

timestamp
The value should be interpreted as a time interval in microseconds measured from an
arbitrary point in time. The source of this timestamp is the internal clock in the eye tracker
hardware.

marker A value sent by Inquisit to indicate the occurence of a significant event (e.g., onset of a
visual stimulus)

leftpixelx The horizontal pixel location in display coordinates of the gaze point of the left eye.

Page 170

http://www.millisecond.com/download/library/Tobii/

leftpixely The vertical pixel location in display coordinates of the gaze point of the left eye.

rightpixelx The horizontal pixel location in display coordinates of the gaze point of the right eye.

rightpixely The vertical pixel location in display coordinates of the gaze point of the right eye.

focuspixelx The horizontal pixel location in display coordinates of the gaze point of binocular focus.

focuspixely The vertical pixel location in display coordinates of the gaze point of binocular focus.

leftgazex X coordinate of the gaze point of the left eye in the 3D User Coordinate System.

leftgazey Y coordinate of the gaze point of the left eye in the 3D User Coordinate System.

leftgazez Z coordinate of the gaze point of the left eye in the 3D User Coordinate System.

rightgazex X coordinate of the gaze point of the right eye in the 3D User Coordinate System.

rightgazey Y coordinate of the gaze point of the right eye in the 3D User Coordinate System.

rightgazez Z coordinate of the gaze point of the right eye in the 3D User Coordinate System.

lefteyex X coordinate of the location of the left eye in the 3D User Coordinate System.

lefteyey Y coordinate of the location of the left eye in the 3D User Coordinate System.

lefteyez Z coordinate of the location of the left eye in the 3D User Coordinate System.

righteyex X coordinate of the location of the right eye in the 3D User Coordinate System.

righteyey Y coordinate of the location of the right eye in the 3D User Coordinate System.

righteyez Z coordinate of the location of the right eye in the 3D User Coordinate System.

leftpupilwidth Width of the left pupil in millimeters

leftpupilheight Height of the left pupil in millimeters.

rightpupilwidth Width of the right pupil in millimeters.

rightpupilheight Height of the right pupil in millimeters.

leftvalidity
An estimate of how certain the eye tracker is that the data given for the left eye really
originates from that eye, with 0 indicating the eye was definitely found, and 4 indicating the
eye was not found.

rightvalidity
An estimate of how certain the eye tracker is that the data given for the right eye really
originates from that eye, with 0 indicating the eye was definitely found, and 4 indicating the
eye was not found.

Page 171

Sending Port Markers to Eyetracker
Software with Inquisit

(I) Sending static markers (static = markers do not
change values)

1) Create <port> elements
In order to send markers to eyetracker software (e.g. Tobii) to indicate the on- and/ or offset of stimuli, port
elements for the markers have to be declared:

<port stimOnsetMarker> /*this marker sends value "1" to signal onset
of stimulus

/port = eyetracker

/items = (1)

</port>

<port stimOffsetMarker>/*this marker sends value "0" to signal
offset of stimulus

/port = eyetracker

/items = (0)

</port>

2) Include markers into relevant <trial> elements
The port elements then have to be included into the relevant trials.

<trial collectData>

/stimulustimes = [0 = stim, stimOnsetMarker; 1000 = eraseStim,
stimOffsetMarker]

...

</trial>

Page 172

(II) Sending dynamic markers (dynamic = markers can
change value during runtime)
You can also dynamically set the value of your port markers.

Example:

You record participants' eye movements while they are looking at 2 different kinds of drinks; a soda can vs. a
beer can. You test several different kinds of soda can images and several different kinds of beer can images
and you counterbalance the screen positions of soda cans and beer cans.

You wish your marker to include information about stimulus positions and specific images presented.

1) Create <port> elements
<port dynamMarker>

/port = eyetracker

/items = (0) /*this value will change during runtime

</port>

And add a value for the value that should be send as your marker:

<values>

/marker = 0

</values>

2) Create a numeric code that incorporates all the relevant info
For example (many different ways are possible - this is just one way), you could dynamically create markers
of the following kind:" 015027"

0 = indicates start of left stimulus
1 = soda (Note: 2 would signal beer was the left stimulus)
5 = Next digits until 0 code the item number of left image
0 = indicates start of right stimulus
2 = beer
7 = Next digits until end code item number of right image

3) Create and include markers into relevant <trial> elements
<trial SodaBeer> /*trial to present soda can left and beer can
right

/ontrialbegin = [

values.marker = ""; /*reset marker value

values.marker = concat(values.marker, "01"); /*add '01' for

Page 173

soda is left

values.marker = concat(values.marker,
picture.sodaLeft.currentitemnumber); /* add current itemnumber for
left image

values.marker = concat(values.marker, "02"); /*add '02' for
beer is right

values.marker = concat(values.marker,
picture.beerRight.currentitemnumber); /* add current itemnumber
for right image

port.dynamMarker.setitem(values.marker, 1); /*set the item
for the marker you want to send

]

/stimulustimes = [0 = sodaLeft, beerRight, dynamMarker] /*sends
015027 at stimulusonset

…

</trial>

Page 174

How to Register Inquisit Lab in Managed
Automated Deployments
Inquisit Lab enables provies a user interface for manual registration of the product using an email and
password. While this provides a simple mechanism for registering a few machines, the manual process is
cumbersome for registering large numbers of machines in a managed IT environment.

For mass deployment and registration of Inquisit, registration can be accomplished by running an install
script in the rollout immediately after installation of Inquisit Lab completes. This script calls the Inquisit
application via command line, passing in the userid and password as arguments for retrieving the registration
key. If the process has administrative privileges, Inquisit will register for all users on the machine. If the
process only has user privileges, it will register the current user only.

To register Inquisit Lab from the command line, call the Inquisit executable with the following command line
parameters:

[InstallDir]Inquisit.exe --register --userid
myuserid@millisecond.com --password mypassword --account myaccount

The "--register" argument tells Inquisit to register the product.

The "--userid" argument is the email address of one of the users on the account.

The "--password" argument is the password associated with the user.

The "--account" argument is the name of the account for the licenses. This is only required if the specified
user is a member of more than one account.

Page 175

Introducing Inquisit 6 Web
Inquisit 6 Web extends the power and flexibility of the Inquisit 6 experiment engine to the web. With Inquisit
Web, your experiments can be launched directly from a web page without having to manually install Inquisit
on the client machine. Data gathered from the web can be saved back to a web site, ftp site, network share,
or even an email address.

What are the benefits of Inquisit 6 Web?
Unlimited client licenses. With Inquisit Web, Inquisit experiments can be run on an unlimited number of client
machines. This makes Inquisit Web an ideal tool for large scale data collection in laboratories, class rooms,
or over the Internet.

Easy web deployment.Your participants can run your studies by simply browsing to a web page, download
the Inquisit Web app, then clicking a link to start the study.

Power, flexibility, and accurate timing. The Inquisit Web engine affords the same power, flexibility, and timing
accuracy as the Inquisit Lab engine. How is that possible? Because the Inquisit Web engine is the Lab
engine. Literally. We've just repackaged it in a way that makes it easy to deploy over the web.

Compatible with Inquisit 6 Lab. Your Inquisit 6 scripts will run interchangeably between the lab and web
engines. There is no need to maintain and test multiple versions of your scripts.

How does the Inquisit 6 Web work?
When you purchase a web license, we will create an account on millisecond.com where can login and use
the online tools to upload and register experiments. Once you've registered an experiment, you will have a
launch page on millisecond.com where you can direct participants. On the launch page, they can click a link
to start the experiment. They will have to agree to download Inquisit Web, after which the experiment will
start. Inquisit Web download all materials required to run the study at the very beginning, then runs the
experiment locally on the participant's computer, and uploads the data at the end. Inquisit thus only requires
the network prior to and after the experiment runs, but it does not rely on the network as the experiment is
running.

You can see what the experience of launching an Inquisit Web study yourself by running any of the demos in
the Inquisit Task Library.

How does licensing work with Inquisit 6 Web?
Unlike Inquisit Lab, Inquisit Web is not licensed based on the number of client computers that install and run
Inquisit experiments. In fact, an Inquisit Web license entitles you to run Inquisit experiments on an unlimited
number of client computers.

Inquisit Web licenses determine the number of experiments that can be run at a given point in time. An
Inquisit Web license entitles you to run a single web experiment (as defined by a single Inquisit script). If you
wish to run one web experiment at a time, you would only need a single Inquisit Web license. If you wish to
collect data for five different experiments in parallel, you would need five Inquisit Web licenses.

Inquisit Web enforces the licensing policy at run time by checking whether the experiment it has been
instructed to run is listed as an active experiment for the specified user account. If the experiment is active,
the experiment runs as normal. If the experiment is not active, it can optionally be run, but no data will be
collected. You may change your list of active experiments as often as you'd like. However, the number of
active experiment you may specify is limited to the number of Inquisit Web licenses held by your account.
Importantly, this means that Inquisit Web must be able to connect to www.millisecond.com from the client
computer in order to collect data. Inquisit Web can not be used to collect data on machines that are not

Page 176

http://www.millisecond.com/download/library/

connected to the Internet.

What are the machine requirements for Inquisit 6 Web?
The client must be running Windows XP or later, or Mac OSX 10.5 or later. Sorry, no support for Linux.

The client must have a working Internet connection.

The client must be running an reasonably recent version of Chrome, Firefox, Internet Explorer, or Safari.

Where can I get Inquisit 6 Web?
To use Inquisit 6 Web, you must purchase a web license. This will enable you to login to your account on
millisecond.com, where you can use our online tools for uploading experiments and accessing your data.

Page 177

Introducing Inquisit 6 Web
Inquisit 6 Web extends the power and flexibility of the Inquisit 6 experiment engine to the web. With Inquisit
Web, your experiments can be launched directly from a web page without having to manually install Inquisit
on the client machine. Data gathered from the web can be saved back to a web site, ftp site, network share,
or even an email address.

What are the benefits of Inquisit 6 Web?
Unlimited client licenses. With Inquisit Web, Inquisit experiments can be run on an unlimited number of client
machines. This makes Inquisit Web an ideal tool for large scale data collection in laboratories, class rooms,
or over the Internet.

Easy web deployment.Your participants can run your studies by simply browsing to a web page, download
the Inquisit Web app, then clicking a link to start the study.

Power, flexibility, and accurate timing. The Inquisit Web engine affords the same power, flexibility, and timing
accuracy as the Inquisit Lab engine. How is that possible? Because the Inquisit Web engine is the Lab
engine. Literally. We've just repackaged it in a way that makes it easy to deploy over the web.

Compatible with Inquisit 6 Lab. Your Inquisit 6 scripts will run interchangeably between the lab and web
engines. There is no need to maintain and test multiple versions of your scripts.

How does the Inquisit 6 Web work?
When you purchase a web license, we will create an account on millisecond.com where can login and use
the online tools to upload and register experiments. Once you've registered an experiment, you will have a
launch page on millisecond.com where you can direct participants. On the launch page, they can click a link
to start the experiment. They will have to agree to download Inquisit Web, after which the experiment will
start. Inquisit Web download all materials required to run the study at the very beginning, then runs the
experiment locally on the participant's computer, and uploads the data at the end. Inquisit thus only requires
the network prior to and after the experiment runs, but it does not rely on the network as the experiment is
running.

You can see what the experience of launching an Inquisit Web study yourself by running any of the demos in
the Inquisit Task Library.

How does licensing work with Inquisit 6 Web?
Unlike Inquisit Lab, Inquisit Web is not licensed based on the number of client computers that install and run
Inquisit experiments. In fact, an Inquisit Web license entitles you to run Inquisit experiments on an unlimited
number of client computers.

Inquisit Web licenses determine the number of experiments that can be run at a given point in time. An
Inquisit Web license entitles you to run a single web experiment (as defined by a single Inquisit script). If you
wish to run one web experiment at a time, you would only need a single Inquisit Web license. If you wish to
collect data for five different experiments in parallel, you would need five Inquisit Web licenses.

Inquisit Web enforces the licensing policy at run time by checking whether the experiment it has been
instructed to run is listed as an active experiment for the specified user account. If the experiment is active,
the experiment runs as normal. If the experiment is not active, it can optionally be run, but no data will be
collected. You may change your list of active experiments as often as you'd like. However, the number of
active experiment you may specify is limited to the number of Inquisit Web licenses held by your account.
Importantly, this means that Inquisit Web must be able to connect to www.millisecond.com from the client
computer in order to collect data. Inquisit Web can not be used to collect data on machines that are not

Page 178

http://www.millisecond.com/download/library/

connected to the Internet.

What are the machine requirements for Inquisit 6 Web?
The client must be running Windows XP or later, or Mac OSX 10.5 or later. Sorry, no support for Linux.

The client must have a working Internet connection.

The client must be running an reasonably recent version of Chrome, Firefox, Internet Explorer, or Safari.

Where can I get Inquisit 6 Web?
To use Inquisit 6 Web, you must purchase a web license. This will enable you to login to your account on
millisecond.com, where you can use our online tools for uploading experiments and accessing your data.

Page 179

How to Run an Inquisit 6 Experiment on the
Web
Inquisit 6 Web allows you to launch your experiments directly from a web page. If you have purchased a web
license, you have the option of launching expeirments from your own web site or from the millisecond.com
web site. In either case, data are saved by default to the millisecond.com data service where you can login
and download the data files.

If you haven't yet purchased a web license, you can still evaluate Inquisit 6 Web by setting up an experiment
on your own web server. When evaluating Inquisit, you can launch and run scripts as normal, but the data will
not be saved.

Click here for more information on registering Inquisit 6 Lab. Click here for more information on registering
Inquisit 6 Web.

Publishing Inquisit scripts on millisecond.com
Hosting your scripts on millisecond.com is the easiest option for those without experience creating and
administering web sites. For those with basic web development skills, this option also includes some support
for customizing the launch web page and subject number assignment method. To publish a script on
millisecond.com:

1. Write and test your Inquisit script using the Inquisit 6 Lab editor and tools.
2. Open your web browser and navigate to the millisecond.com web site.
3. Select "My Account" from the menu and click the "Register Inquisit Web Scripts" menu item. If

you are not already logged into the site, you will be prompted for your user name and password.
4. Under the "Register Web Scripts" section, click the "Register New Script" link. This will launch

the Inquisit Web Script Wizard
5. The first page of the wizard asks whether you wish to host the experiment on millisecond.com or

on your own web server. Select the millisecond.com option. The click the "Browse..." button and
select your script file from your local computer. Click next once you have specified the script file.

6. On the next page you can upload additional files used by the script such as pictures and video.
7. Next, select whether you wish to use Inquisit's automatically generated launch page or your own

custom web page. The subsequent steps in the wizard allow you specify the title, instructions,
and how subject id numbers should be generated and assigned to subjects.

8. When you are done, click the Finish button. That's it, your experiment is now online. You can
browse to the launch page using the following url:

http://research.millisecond.com/[username]/[scriptfilename].web

where [username] is your user id and [scriptfilename] is the original filename of your script.
9. Click the "Start" link to launch your experiment.

Publishing Inquisit scripts on your own web server
Hosting experiments on your own server is an easy if you have access to a web server. To deploy an Inquisit
experiment to your web server, follow these steps:

1. Write and test your Inquisit script using the Inquisit 6 Lab editor and tools, or download a script
from the Inquisit Task Library.

2. Navigate to your web scripts page at http://www.millisecond.com/myaccount/webscripts.aspx.
3. If the status of your web license is "pending", start your web license by clicking the "Start Now"

link.
4. Click the "Register New Script" link to launch the registration wizard and follow the steps in the

wizard.

Page 180

http://www.millisecond.com/purchasedesktop.aspx
http://www.millisecond.com/purchaseweb.aspx
http://www.millisecond.com/download/library/
http://research.millisecond.com/[username]/[scriptfilename].web
http://www.millisecond.com/myaccount/webscripts.aspx.

5. On the first page of the wizard, select the option to host the experiment on your own server, and
enter the full url to the script file on your server.

6. Continue through the wizard specifying the options you'd like for the launch page.
7. On the final Summary page of the wizard, click the "Download Launch Page" button and save the

html page to your computer. Then click the Finish button.
8. Upload your script file and the launch page created above to the location on your web server that

you specified when registering the script. If you script uses picture or other media files, be sure to
upload those as well.

9. Direct participants to the launch web page to start the experiment.

Page 181

Gathering Data Over the Web
Inquisit 6 enables you send data from the desktop machine running the experiment to a remote server on the
network. The ability to save data to a remote server is critical for experiments conducted over the web
because the experimenter often does not have access to the participant's computer to retrieve any locally
saved data files. The feature can also be used with Inquisit Lab, for example, in cases where it is more
convenient to save the data to a single location rather than having to copy the data files from multiple
computers in a classroom or lab.

There are several options for saving data to a remote server.

1. Save the data to the millisecond.com web server where the experimenter can login and download
the files.

2. Send the data to a web server via HTTP POST
3. Send the data to an FTP server
4. Save the data to a shared network (UNC) folder

Of couse, it is also possible for both web and lab experiments to save the data to the local machine in cases
where the experiment is run on lab or classroom computers.

Option 1 (saving the data to millisecond.com) is the default behavior of Inquisit Web, and it is by far the most
reliable and easiest solution. To protect against snoopers and sniffers, data is encrypted and posted back to
millisecond.com using Secure Sockets Layer (SSL), the same technology used by online shopping and
banking web sites to protect sensitive information transmitted over the web. Each participant's data is saved
to the server is a separate file. The experimenter can login and download the files from the millisecond.com
web site. Again, the downloaded files are encrypted over the network using SSL.

While option 1 is appropriate for the vast majority of experimenters, in some cases it may be necessary or
desirable to leverage some of the other remote data features of Inquisit. The means by which data is saved to
a server is controlled by the following attributes on the data element.

<data>

/ encrypt = true | false

/ file = "file path"

/ password = "password"

/ userid = "userid"

</data>

Encrypt specifies whether Inquisit should first encrypt the data before being sending it back to the server. If
the data is being saved over SSL, this command can be set to "false" since the data will be encrypted using
standard web protocols. If SSL is not an option, this command should be set to "true" to obfuscate potentially
sensitive data from being compromised by hackers and packet sniffers as it travels over the network.
Encrypted data files are saved with the "inq" extension. Unencrypted data files have the "dat" extenstion.

The file attribute specifies the location to which the data is saved. This can be any of the following:

 Http or https address (e.g., https://www.millisecond.com/). Inquisit uses the HTTP POST
protocol to send the data back to the web server. Most web development technologies (PHP,
ASP, ASP.NET, JSP) have easy to use methods for extracting data that has been posted to the
server.

 Ftp address (e.g., ftp://www.millisecond.com/mydata/). Inquisit uses the standard FTP protocol to
save files to a folder on an ftp server.

 Unc path (e.g., \\millisecond\mydata\). If you are running the experiment inside a LAN, you can
save the data to a writeable network share.

 Local path (e.g., c:\inquisit\mydata\). Inquisit saves the data to the specified path on the client
computer.

Page 182

http://www.millisecond.com/myaccount/
https://www.millisecond.com/
ftp://www.millisecond.com/mydata/).

If you specify a folder with no file name, Inquisit will default the file name to that of the script file. Otherwise, it
will use the specified file name. So as not to overwrite other data files on the server, Inquisit also appends the
date and time (to the nearest millisecond) to the file name along with the "dat" or "inq" file extension
depending whether encryption is turned on.

The userid and password attributes allows you to specify login credentials to use when accessing the web,
ftp, or unc. It is not necessary to specify the userid or password when saving the data to millisecond.com.

When saving data to a remote server, Inquisit creates separate data files for each run of the script as
opposed to appending the data to a single file as it does in the case of saving to a local folder. This is to avoid
potential collisions that might occur when multiple clients attempt to save to the server at the same time. You
can combine multiple data files into a single file by selecting the "Open" command on Inquisit's file menu and
multi-selecting all of the files you wish to combine. Inquisit will open all of the selected files, appending them
together. You can then select the "Save As" command on Inquisit's File menu to save the combined data into
a single file.

Note that data collection capabilities of both Inquisit Web and Inquisit Lab are disabled unless a license has
been purchased.

Page 183

Assigning Subject Numbers in Web
Experiments
Subject numbers play a number of important roles in experiments. In longitudinal studies, they can be used
to correlate data gathered from a subject at different times. For experiments with between-subject variables,
subject numbers play a critical role in assigning participants into particular conditions. By using identification
numbers such as student ids or telephone numbers, the subject number can also allow researchers to
identify participants in cases where the research makes that necessary.

For traditional lab research, managing subject numbers with Inquisit is straightforward. The experimenter
starts the Inquisit script and either enters the subject number herself, or she instructs the participant to enter
the number. With web research, participants may be located anywhere in the world, in which case there is no
experimenter overseeing the data collection session who can assign the appropriate subject number. In these
cases, it is necessary to devise a system in which either participants can specify the number themselves, or
the number is automatically assigned by the web site. This article will discuss several strategies for
assigning subject numbers to web participants.

Subject numbers for between-subject variables
One of the most common uses of subject numbers by Inquisit is to assign subjects into a particular cell of a
between-subjects variable. Subject numbers are mapped to conditions within the Inquisit script itself, either
by the expt or the variables element. For example, in Figure 1 below the script uses the expt element to
counterbalance the order of two blocks across even and odd numbered subjects:

Figure 1.

<expt>

/ subjects = (1 of 2)

/ blocks = [1=conditiona; 2=conditionb]

</expt>

<expt>

/ subjects = (2 of 2)

/ blocks = [1=conditionb; 2=conditiona]

</expt>

In most cases, the researcher wants to ensure that subjects are randomly assigned into the even or odd
numbered group, and they want equal numbers of subjects in each condition.

Subject number assignment for scripts hosted on
millisecond.com
If you choose to host your script on the millisecond.com server, there are several options for generating

Page 184

subject numbers that you can choose from: random generation, random generation without replacement,
sequential, user entered, and user entered with confirmation prompt. You simply choose which option you
want when running the Script Registration Wizard. There's no need to understand the technical details of how
these work.

Subject number assignment for scripts hosted on other
servers
If you are hosting the script on your own server, you can select from 3 different sample pages to use as a
starting point for your launch page. The sample pages are all linked to from here:
http://www.millisecond.com/web/samplelaunch.aspx.

Random Assignment of Subject Numbers
The first sample page shows random generation of subject nunbers, which is the simplest way to achieve a
random, approximately even distribution of subjects into different conditions. Let's take a look at how the
reference page randomly assigns subject numbers. (You can see this first hand by browsing to the page and
viewing the underlying source.) The first thing to note is the following section of JavaScript at the top of the
page source:

In the source code for the page is a javascript method called "GetSubjectNumber" that is responsible for
generating the subject number. For random generation, the method looks like this:

Figure 2.

function GetSubjectNumber()

{

 return (Math.floor(Math.random() * 1000000000));

}

The method contains a single line of code does the work of randomly generating the subject number. The
function uses the javascrip method , Math.random(), to generate a random number from 0 to 1, then multiples
that value by 1,000,000,000 and rounds it down to the nearest integer so that the final result is a random
number between 1 and 1,000,000,000. Note that we are selecting numbers with replacement, so it is
theoretically possible that two participants might be assigned the same subject number. However, the
chances are slim indeed, and if it does happen, you can use the time of the session as logged in the "date"
and "time" data columns to distinguish the subjects' data.

Prompting participants to enter a subject number
For some experiments, it may be necessary or convenient to use personal identification such as a telephone
number, social security number, or student id as the subject number rather than an arbitrary, randomly
generated number. To administer this kind of experiment over the web, the participant must be allowed to
input their id number so that it can be recorded along with the data. The second option allow you to prompt
the participant to enter an id number. The third option has the subject enter the number twice to avoid keying
errors.

Let's take a look at the javascript for the third option, which is the more complicated method. In this case, the
GetSubjectNumber() method contains the following javascript code, which prompts the subject to enter a 5
digit number, then prompts again to confirm the number, and provides error feedback if the number is invalid
or they don't match.

Figure 3.

Page 185

http://www.millisecond.com/web/samplelaunch.aspx
http://www.millisecond.com/web/samplelaunch.aspx

function GetSubjectNumber()

{

// This method prompts the subject for an id number and then prompts

 again to // confirm in order avoid mistyped numbers.

var intRegExp = /(^\d{5,5}$)/;

var promptMsg = "Please enter a 5 digit id number.";

var confirmMsg = "Please confirm the number you entered.";

var invalidMsg = "The number was invalid. Please enter a valid
number.";

var matchMsg = "The numbers you entered did not match. Please enter
the number again.";

var snum = window.prompt(promptMsg, "");

while (snum != null && intRegExp.test(snum) == false)

{

// if the input was invalid, prompt again

 window.alert(invalidMsg);

 snum = window.prompt(promptMsg, "");

}

if (snum == null)

{

 return null;

}

var sconfirm = window.prompt(confirmMsg, "");

while (sconfirm != null && (sconfirm != snum ||
intRegExp.test(sconfirm) == false))

Page 186

{

 // if the input was invalid, prompt again

 if (intRegExp.test(sconfirm) == false)

 {

 window.alert(invalidMsg);

 }

 // if the numbers do not match, alert the user and bail out so

 they can start over

 else if (sconfirm != snum)

 {

 window.alert(matchMsg);

 return null;

 }

 sconfirm = window.prompt(confirmMsg, "");

}

return sconfirm;

}

The validation is done through the regular expression in the first line of code. You can change the validation
by replacing the regular expression (which only verifies that the input is numeric and 5 digits long) with your
own. If you don't understand regular expressions, don't worry, the web is abundant with ready made regular
expressions for validating all kinds of input (integers, zip codes, telephone numbers, etc.). I found this one in
seconds through Google.

Customized subject number generation
If you wish to use your own method for generating subject numbers, you can do so simply by editing the
GetSubjectNumber() method in the source code. Remember, this javascript code runs on the participant's
machine, not on the server, so it has no way to keep track of which subject numbers have already been
assigned. For that, you would have to program some server code that tracks subject numbers in a database,
then dynamically injects the subject number into this web page, and in particular, into the

Page 187

GetSubjectNumber(). If you host your scripts on millisecond.com, this is how the hosting service is able to
generate sequential subject numbers and random selection without replacement.

These are just a few of the strategies for assigning subject numbers on the web. They are by no means the
only techniques possible. Other strategies include deriving subject numbers from the date and time, the ip
address of the client computer, or the session id. For those with some familiarity with web development, the
web is an flexible and open programming environment that makes any number of schemes possible.

Page 188

Inquisit Language Reference

item element
The item element defines a set of stimulus items.

Syntax
<item itemname>
/ 2 = "item text"
/ 3 = "item text"
/ 4 = "item text"

/ 1 = "item text" or "path"
</item>

Properties
item.itemname.itemcount
item.itemname.items
item.itemname.name
item.itemname.typename

Functions
item.itemname.appenditem
item.itemname.clearitems
item.itemname.insertitem
item.itemname.item
item.itemname.removeitem
item.itemname.reset
item.itemname.setitem

Remarks
Stimulus items can be defined using the item element or the items attribute. If multiple stimuli have the same
set of items, the item element allows you to specify the items in a single place and reuse them with the
different stimuli rather than repeating them inline within each stimulus.

The content of the items depends on the type of stimulus that is using the items. For text stimuli, the items
represent the text to display on the screen. Picture, sound, and video interpret each item as a path to a
picture, sound, or video file. If relative file paths are specified, the path is interpretted relative to the folder
containing the script file.

For port stimuli, the items must be an 8 character string of zeroes and ones representing an 8-bit signal to
send through the port (e.g., "00001111", "11111111", ...).

For dynamically defined item sets, the items attribute specifies which trial generates the items. Each time
the specified trial is run, the subject's response on that trial is added to the item set until the set is full.

Stimulus items may also contain embedded peformance variables. The current value of a given measure for a
given trial or block can be inserted anywhere within the text of a stimulus itemby specifying the type of
element, element's name, and the name of the measure as follows:

<% type.name.property %>

Page 189

Examples
The following item set consists of 5 statically defined items for use by a text element.

<item shoppinglist>
/ 1="bread"
/ 2="beer"
/ 3="eggs"
/ 4="butter"
/ 5="milk"
</item>

The following item set consists of 2 statically defined items containing variables for use by a text element.

<item shoppinglist>
/ 1="mean latency = <% trial.critical.meanlatency %>"
/ 2="percent correct = <% trial.critical.percentcorrect %>"
</item>

The following item set consists of 4 statically defined images for use by a picture element. The image files
are in the same folder as the script.

<item monuments>
/ 1="mountrushmore.jpg"
/ 2="washington.gif"
/ 3="lincoln.bmp"
/ 4="statueofliberty.jpg"
</item>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 190

Inquisit Language Reference

clock element
The clock element presents a timer, stopwatch, or clock on the screen.

Syntax
<clock clockname>

/ animation = circle(duration, loopcount, start, xcenter, ycenter, radius) or
path(duration, loopcount, x1, y1, x2, y2, x3, y3, ...) or points(duration,
loopcount, x1, y1, x2, y2, x3, y3, ...) or size(duration, loopcount,
startwidth, startheight, scale1, scale2, scale3, ...) or rotation(duration,
loopcount, degrees1, degrees2, degrees3, ...)
/ format = clockformat
/ mode = clockmode

/ dropposition = (x value, y value) or (x constant, y constant)
/ dropsource = value or boolean
/ droptarget = property or boolean
/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ halign = alignment
/ height = numeric expression
/ hposition = x expression
/ monitor = integer
/ onprepare = [expression; expression; expression; ...]
/ position = (x value, y value)
/ resetrate = rate
/ size = (width variable, height variable)
/ timeout = integer expression

/ txbgcolor = (red value, green value, blue value) or (transparent) or color
name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ valign = alignment
/ vposition = y expression
/ width = numeric expression
</clock>

Properties
clock.clockname.bottom
clock.clockname.currenttime
clock.clockname.dropsource
clock.clockname.droptarget
clock.clockname.dropx
clock.clockname.dropy
clock.clockname.elapsedtime
clock.clockname.erase
clock.clockname.erasecolor
clock.clockname.erasecolorblue
clock.clockname.erasecolorgreen
clock.clockname.erasecolorred
clock.clockname.fontheight

Page 191

clock.clockname.height
clock.clockname.heightpct
clock.clockname.heightpx
clock.clockname.hposition
clock.clockname.left
clock.clockname.monitor
clock.clockname.name
clock.clockname.remainingtime
clock.clockname.right
clock.clockname.rotation
clock.clockname.skip
clock.clockname.stimulusonset
clock.clockname.textbgcolor
clock.clockname.textbgcolorblue
clock.clockname.textbgcolorgreen
clock.clockname.textbgcolorred
clock.clockname.textcolor
clock.clockname.textcolorblue
clock.clockname.textcolorgreen
clock.clockname.textcolorred
clock.clockname.timeout
clock.clockname.timestamp
clock.clockname.top
clock.clockname.typename
clock.clockname.vposition
clock.clockname.width
clock.clockname.widthpct
clock.clockname.widthpx
clock.clockname.xpct
clock.clockname.xpx
clock.clockname.ypct
clock.clockname.ypx

Functions
clock.clockname.pause
clock.clockname.resettime
clock.clockname.start

Remarks
The clock element is used to display a timer, stopwatch, or clock on the screen. The clock is a convenient
way to show participants how much time is left to complete the task.

Examples
The following presents a 5-minute timer spanning a block of trials with yellow letters against a black
background:

<clock timer>
/ mode = timer
/ resetrate = block
/ erase = false
/ txcolor = yellow
/ txbgcolor = black

Page 192

/ timeout = 300000
/ position = (50%, 10%)
/ format = "mm:ss"
</clock>

The following presents white stopwatch with black letters that spans a single trial:

<clock stopwatch>
/ mode = stopwatch
/ txcolor = black
/ txbgcolor = white
/ format = "hh:mm:ss"
/ position = (50%, 90%)
</clock>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 193

Inquisit Language Reference

picture element
The picture element defines a set of pictures items and controls how they are displayed.

Syntax
<picture picturename>

/ animation = circle(duration, loopcount, start, xcenter, ycenter, radius) or
path(duration, loopcount, x1, y1, x2, y2, x3, y3, ...) or points(duration,
loopcount, x1, y1, x2, y2, x3, y3, ...) or size(duration, loopcount,
startwidth, startheight, scale1, scale2, scale3, ...) or rotation(duration,
loopcount, degrees1, degrees2, degrees3, ...)

/ dropposition = (x value, y value) or (x constant, y constant)
/ dropsource = value or boolean
/ droptarget = property or boolean
/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ halign = alignment
/ height = numeric expression
/ hposition = x expression

/ items = itemname or ("item", "item", "item",...) or ("path", "path",
"path",...)
/ monitor = integer
/ onprepare = [expression; expression; expression; ...]
/ position = (x value, y value)
/ resetinterval = integer
/ rotation = degrees

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
/ size = (width variable, height variable)
/ valign = alignment
/ vposition = y expression
/ width = numeric expression
</picture>

Properties
picture.picturename.bottom
picture.picturename.currentindex
picture.picturename.currentitem
picture.picturename.currentitemnumber
picture.picturename.currentvalue
picture.picturename.dropsource
picture.picturename.droptarget
picture.picturename.dropx
picture.picturename.dropy
picture.picturename.erase
picture.picturename.erasecolor
picture.picturename.erasecolorblue
picture.picturename.erasecolorgreen
picture.picturename.erasecolorred
picture.picturename.height
picture.picturename.heightpct

Page 194

picture.picturename.heightpx
picture.picturename.hposition
picture.picturename.itemcount
picture.picturename.items
picture.picturename.left
picture.picturename.name
picture.picturename.nextindex
picture.picturename.nextvalue
picture.picturename.playthrough
picture.picturename.resetinterval
picture.picturename.right
picture.picturename.rotation
picture.picturename.selectedcount
picture.picturename.skip
picture.picturename.stimulusonset
picture.picturename.timestamp
picture.picturename.top
picture.picturename.typename
picture.picturename.unselectedcount
picture.picturename.vposition
picture.picturename.width
picture.picturename.widthpct
picture.picturename.widthpx
picture.picturename.xpct
picture.picturename.xpx
picture.picturename.ypct
picture.picturename.ypx

Functions
picture.picturename.appenditem
picture.picturename.clearitems
picture.picturename.insertitem
picture.picturename.item
picture.picturename.removeitem
picture.picturename.resetselection
picture.picturename.setitem

Remarks
The picture element selects invidiual image files and presents them on the screen at the specified size,
location, and rotation.

The following image formats are supported:
bmp, gif, jpeg, jpg, pbm, pgm, png, ppm, tif, tiff, wbmp, webp, xbm, xpm, svg

Examples
The following defines a set of picture items presented on the right side of the screen:

<picture moutains>
/ items = ("rainier.bmp", "baker.jpg", "sainthelens.gif")
/ position = (75, 50)
</picture>

Page 195

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 196

Inquisit Language Reference

port element
The port element defines a set of 8-bit signals to be sent through a serial or parallel port.

Syntax
<port portname>

/ erase = true("bits") or true(integer) or false
/ items = itemname or ("binary", "binary", "binary",...) or (integer,
integer, integer,...)
/ onprepare = [expression; expression; expression; ...]
/ port = port name
/ resetinterval = integer

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
/ subport = porttype
</port>

Properties
port.portname.currentindex
port.portname.currentitem
port.portname.currentitemnumber
port.portname.currentvalue
port.portname.erase
port.portname.erasesignal
port.portname.itemcount
port.portname.items
port.portname.name
port.portname.nextindex
port.portname.nextvalue
port.portname.playthrough
port.portname.portnumber
port.portname.resetinterval
port.portname.selectedcount
port.portname.skip
port.portname.stimulusonset
port.portname.timestamp
port.portname.typename
port.portname.unselectedcount

Functions
port.portname.appenditem
port.portname.clearitems
port.portname.insertitem
port.portname.item
port.portname.removeitem
port.portname.resetselection
port.portname.setitem

Page 197

Remarks
The port element determines which port the signal is sent through along with how individual signals are
selected on each trial (e.g. randomly, in sequence, etc.).

Inquisit supports sending values to a serial (RS 232) port on Windws only. Inquisit supports parallel port
signalling on both Windows and Mac. You'll need to first install a PCI Express parallel port card into an open
PCI Express slot on your computer, or to the Mac Thunderbolt port via an adapter. See documentation for the
parallel port monitor for details on connecting a parallel port to a Mac.

Examples
The following presents signals through the data register of the parallel port (LPT2). Items are selected based
on the currently selected item of a another stimuli called "sometext".

<port somesignal>
/ port = LPT2
/ subport = data
/ items = ("00000001", "00000010", "00000100", "00001000")
/ erase = ("00000000")
/ select = current(sometext)
</port>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 198

Inquisit Language Reference

shape element
The shape element defints a single shape stimulus and specifies how the shape is presented.

Syntax
<shape shapename>

/ animation = circle(duration, loopcount, start, xcenter, ycenter, radius) or
path(duration, loopcount, x1, y1, x2, y2, x3, y3, ...) or points(duration,
loopcount, x1, y1, x2, y2, x3, y3, ...) or size(duration, loopcount,
startwidth, startheight, scale1, scale2, scale3, ...) or rotation(duration,
loopcount, degrees1, degrees2, degrees3, ...)

/ color = (red value, green value, blue value) or color name or color value
/ dropposition = (x value, y value) or (x constant, y constant)
/ dropsource = value or boolean
/ droptarget = property or boolean
/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ halign = alignment
/ height = numeric expression
/ hposition = x expression
/ monitor = integer
/ onprepare = [expression; expression; expression; ...]
/ position = (x value, y value)
/ rotation = degrees
/ shape = shapename
/ size = (width variable, height variable)
/ valign = alignment
/ vposition = y expression
/ width = numeric expression
</shape>

Properties
shape.shapename.bottom
shape.shapename.color
shape.shapename.colorblue
shape.shapename.colorgreen
shape.shapename.colorred
shape.shapename.dropsource
shape.shapename.droptarget
shape.shapename.dropx
shape.shapename.dropy
shape.shapename.erase
shape.shapename.erasecolor
shape.shapename.erasecolorblue
shape.shapename.erasecolorgreen
shape.shapename.erasecolorred
shape.shapename.height
shape.shapename.heightpct
shape.shapename.heightpx
shape.shapename.hposition
shape.shapename.left

Page 199

shape.shapename.monitor
shape.shapename.name
shape.shapename.resetinterval
shape.shapename.right
shape.shapename.rotation
shape.shapename.skip
shape.shapename.stimulusonset
shape.shapename.timestamp
shape.shapename.top
shape.shapename.typename
shape.shapename.vposition
shape.shapename.width
shape.shapename.widthpct
shape.shapename.widthpx
shape.shapename.xpct
shape.shapename.xpx
shape.shapename.ypct
shape.shapename.ypx

Functions
None.

Remarks
Button stimuli provide a convenient means of overwriting previously presented stimuli during a presentation
sequence, or for drawing background to be presented behind other stimuli.

Examples
The following defines a blue circle that appears on the right side of the screen:

<shape bluecircle>
/ shape = circle
/ color = (0, 0, 200)
/ position = (80%, 50%)
</shape>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 200

Inquisit Language Reference

sound element
The sound element defines a set of sound stimuli.

Syntax
<sound soundname>

/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ items = itemname or ("item", "item", "item",...) or ("path", "path",
"path",...)
/ onprepare = [expression; expression; expression; ...]
/ pan = integer
/ playthrough = boolean
/ resetinterval = integer

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
/ volume = integer
</sound>

Properties
sound.soundname.currentindex
sound.soundname.currentitem
sound.soundname.currentitemnumber
sound.soundname.currentvalue
sound.soundname.erase
sound.soundname.itemcount
sound.soundname.items
sound.soundname.name
sound.soundname.nextindex
sound.soundname.nextvalue
sound.soundname.pan
sound.soundname.playthrough
sound.soundname.resetinterval
sound.soundname.selectedcount
sound.soundname.skip
sound.soundname.stimulusonset
sound.soundname.timestamp
sound.soundname.typename
sound.soundname.unselectedcount
sound.soundname.volume

Functions
sound.soundname.appenditem
sound.soundname.clearitems
sound.soundname.insertitem
sound.soundname.item
sound.soundname.removeitem
sound.soundname.resetselection

Page 201

sound.soundname.setitem

Remarks
The sound element determines how individual items are selected on each trial (e.g. serially through item list,
random selection without replacement, linked to the selection of items from another stimulus element) and
how those items should be presented (e.g., left/right pan and volume).

Examples
The following defines a set of sounds to be presented to the left speaker:

<sound rock>
/ items = ("beatles.wav", "stones.wav", "thewho.wav")
/ pan = -10000
</sound>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 202

Inquisit Language Reference

systembeep element

Syntax
<systembeep>
This element has no attributes
</systembeep>

Properties
systembeep.currentindex
systembeep.currentvalue
systembeep.duration
systembeep.erase
systembeep.frequency
systembeep.itemcount
systembeep.items
systembeep.name
systembeep.nextindex
systembeep.nextvalue
systembeep.playthrough
systembeep.stimulusonset
systembeep.typename

Functions
None.

Remarks
The systembeep element is built-in, there is no need to explicitly declare it in the script. It is a type of
stimulus, so it can be used wherever a stimulus element is valid. The systembeep is useful for providing audio
feedback (e.g., to indicate an incorrect response). The advantage of using systembeep rather than the sound
element is that it does not require a sound card. By default, the duration of the beep is 250 ms and the
frequency is 750 hz.

Examples
The following trial presents a beep.

<trial beeptrial>
/ stimulustimes = [1=systembeep]
/ validresponse = (anyresponse)
</trial>

Page 203

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 204

Inquisit Language Reference

text element
The text element defines a set of text stimuli and determines how items are selected and displayed on the
screen.

Syntax
<text textname>

/ animation = circle(duration, loopcount, start, xcenter, ycenter, radius) or
path(duration, loopcount, x1, y1, x2, y2, x3, y3, ...) or points(duration,
loopcount, x1, y1, x2, y2, x3, y3, ...) or size(duration, loopcount,
startwidth, startheight, scale1, scale2, scale3, ...) or rotation(duration,
loopcount, degrees1, degrees2, degrees3, ...)

/ dropposition = (x value, y value) or (x constant, y constant)
/ dropsource = value or boolean
/ droptarget = property or boolean
/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ halign = alignment
/ height = numeric expression
/ hjustify = justification
/ hposition = x expression

/ items = itemname or ("item", "item", "item",...) or ("path", "path",
"path",...)
/ monitor = integer
/ onprepare = [expression; expression; expression; ...]
/ position = (x value, y value)
/ resetinterval = integer
/ rotation = degrees

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
/ size = (width variable, height variable)

/ txbgcolor = (red value, green value, blue value) or (transparent) or color
name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ valign = alignment
/ vjustify = justification
/ voiceover = boolena(language, gender, age, rate)
/ vposition = y expression
/ width = numeric expression
</text>

Properties
text.textname.bottom
text.textname.currentindex
text.textname.currentitem
text.textname.currentitemnumber
text.textname.currentvalue
text.textname.dropsource
text.textname.droptarget

Page 205

text.textname.dropx
text.textname.dropy
text.textname.erase
text.textname.erasecolor
text.textname.erasecolorblue
text.textname.erasecolorgreen
text.textname.erasecolorred
text.textname.fontheight
text.textname.height
text.textname.heightpct
text.textname.heightpx
text.textname.hposition
text.textname.itemcount
text.textname.items
text.textname.left
text.textname.monitor
text.textname.name
text.textname.nextindex
text.textname.nextvalue
text.textname.playthrough
text.textname.resetinterval
text.textname.right
text.textname.rotation
text.textname.selectedcount
text.textname.skip
text.textname.stimulusonset
text.textname.textbgcolor
text.textname.textbgcolorblue
text.textname.textbgcolorgreen
text.textname.textbgcolorred
text.textname.textcolor
text.textname.textcolorblue
text.textname.textcolorgreen
text.textname.textcolorred
text.textname.timestamp
text.textname.top
text.textname.typename
text.textname.unselectedcount
text.textname.voiceover
text.textname.vposition
text.textname.width
text.textname.widthpct
text.textname.widthpx
text.textname.xpct
text.textname.xpx
text.textname.ypct
text.textname.ypx

Functions
text.textname.appenditem
text.textname.clearitems
text.textname.insertitem
text.textname.item
text.textname.removeitem
text.textname.resetselection
text.textname.setitem

Page 206

Remarks
The text element is used to display text stimuli on the screen. Typically, a single text element consists of a
set of text items, and it specifies the method by which a given item is selected for presentation on a trial
(e.g., randomly, in sequential order, linked to a different stimulus element, etc.). The text element also
controls the appearance of the text on the screen, including font, size, color, justification, and location.

Examples
The following presents white text on a blue background:

<text sometext>
/ items = ("inquisit rocks")
/ txcolor = (0, 0, 255)
/ txbgcolor = (255, 255, 255)
</text>

The following defines a set of text items to be selected in sequential order:

<text presidents>
/ items = ("George Washington", "John Adams", "Thomas Jefferson")
/ select = sequence
</text>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 207

Inquisit Language Reference

video element
The video element defines a set of video items and controls how they are displayed.

Syntax
<video videoname>

/ animation = circle(duration, loopcount, start, xcenter, ycenter, radius) or
path(duration, loopcount, x1, y1, x2, y2, x3, y3, ...) or points(duration,
loopcount, x1, y1, x2, y2, x3, y3, ...) or size(duration, loopcount,
startwidth, startheight, scale1, scale2, scale3, ...) or rotation(duration,
loopcount, degrees1, degrees2, degrees3, ...)

/ dropposition = (x value, y value) or (x constant, y constant)
/ dropsource = value or boolean
/ droptarget = property or boolean
/ erase = true(red value, green value, blue value) or true(color value) or
true(color name) or false
/ halign = alignment
/ height = numeric expression
/ hposition = x expression

/ items = itemname or ("item", "item", "item",...) or ("path", "path",
"path",...)
/ monitor = integer
/ onprepare = [expression; expression; expression; ...]
/ playthrough = boolean
/ position = (x value, y value)
/ resetinterval = integer

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
/ size = (width variable, height variable)
/ stream = boolean
/ valign = alignment
/ vposition = y expression
/ width = numeric expression
</video>

Properties
video.videoname.bottom
video.videoname.currentindex
video.videoname.currentitem
video.videoname.currentitemnumber
video.videoname.currenttime
video.videoname.currentvalue
video.videoname.dropsource
video.videoname.droptarget
video.videoname.dropx
video.videoname.dropy
video.videoname.erase
video.videoname.erasecolorblue
video.videoname.erasecolorgreen
video.videoname.erasecolorred
video.videoname.height

Page 208

video.videoname.heightpct
video.videoname.heightpx
video.videoname.hposition
video.videoname.isplaying
video.videoname.itemcount
video.videoname.items
video.videoname.left
video.videoname.loop
video.videoname.monitor
video.videoname.name
video.videoname.nextindex
video.videoname.nextvalue
video.videoname.playthrough
video.videoname.resetinterval
video.videoname.right
video.videoname.selectedcount
video.videoname.skip
video.videoname.stimulusonset
video.videoname.timestamp
video.videoname.top
video.videoname.typename
video.videoname.unselectedcount
video.videoname.vposition
video.videoname.width
video.videoname.widthpct
video.videoname.widthpx
video.videoname.xpct
video.videoname.xpx
video.videoname.ypct
video.videoname.ypx

Functions
video.videoname.appenditem
video.videoname.clearitems
video.videoname.insertitem
video.videoname.item
video.videoname.removeitem
video.videoname.resetselection
video.videoname.setitem

Remarks
The video element determines how video files are selected on each trial (e.g. randomly, in sequence, etc.)
and how those items should be presented. Inquisit can display a variety of different streaming formats,
including asf, vod, mpeg-1, mpeg-2, mpeg-3, mpeg-4, avi, midi, mov, wav, snd, au, and aiff, animated gifs,
and Adobe Flash animations. Note that not all video file containers and codecs are supported on all
platforms. To present videos that will work on both Mac and Windows, use mpg file containers with the
MPEG2 codec format, or use conditional include elements to select *.wmv versions of your videos on
Windows and *.mov versions for Mac.

Examples
The following randomly selects from 3 video files and displays the video on the upper left quadrant of the
screen. Responding is not permitted until the video clip is finished.

Page 209

<video tvshows>
/ items = ("desparatehousewives.mpg", "thedailyshow.avi",
"southpark.wmv")
/ playthrough = true
/ position = (25, 25)
</video>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 210

Inquisit Language Reference

xid element
The xid element enables interacting with XID-compatible devices such as Lumina fMRI Response Pads,
RB-series Response Pads, and StimTracker from Cedrus.

Syntax
<xid xidname>

/ erase = true("bits") or true(integer) or false
/ items = itemname or ("binary", "binary", "binary",...) or (integer,
integer, integer,...)
/ onprepare = [expression; expression; expression; ...]
/ product = product
/ pulseduration = positive integer or -1 to indicate a persistent signal
/ resetinterval = integer

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(listname) or listname
</xid>

Properties
xid.xidname.currentindex
xid.xidname.currentitem
xid.xidname.currentitemnumber
xid.xidname.currentvalue
xid.xidname.erase
xid.xidname.erasesignal
xid.xidname.itemcount
xid.xidname.items
xid.xidname.lastevent
xid.xidname.lasteventaction
xid.xidname.lasteventbutton
xid.xidname.lasteventport
xid.xidname.lastlatency
xid.xidname.name
xid.xidname.nextindex
xid.xidname.nextvalue
xid.xidname.product
xid.xidname.resetinterval
xid.xidname.selectedcount
xid.xidname.skip
xid.xidname.stimulusonset
xid.xidname.timestamp
xid.xidname.typename
xid.xidname.unselectedcount

Functions
xid.xidname.appenditem
xid.xidname.clearitems
xid.xidname.insertitem

Page 211

xid.xidname.item
xid.xidname.removeitem
xid.xidname.resetselection
xid.xidname.setitem

Remarks
The xid element can be used as a stimulus to send signals to a Cedrus StimTracker. To use the xid element
in this mode, simply plug the StimTracker into the computer and ensure that product attribute is set to
stimtracker. You can then define the signals as 8-bit values expressed as binary strings or as an object for
setting and retrieving properties from a Cedrus RB-Series or Lumina response pad.

The xid element can also be used to get more detailed properties from Cedrus RB-Series or Lumina response
pad. The element is not required in order to use a response pad but provides a way to access some of its
advanced features. If you do not require access to the advanced properties of the device, you need only set
the inputdevice attribute to "XID" and the validresponse and/or correctresponse attributes to the values of the
buttons used for the task.

For more information on using Inquisit with Cedrus RB Series and Lumina response pads, see the following
topic.

For more information on using Inquisit with a Cedrus StimTracker, see the following topic.

Examples
The following configures a StimTracker as a stimulus and presents the binary values of 1, 2, or 3 in sequential
order.

<xid stimtracker>
/ product = stimtracker
/ items = ("000000001", "000000010", "00000011")
/ pulseduration = 100
/ selectionmode = sequence
</xid>

The following creates an element for an RB Series response box so that properties (e.g.,
xid.responsepad.lastevent) can be retrieved in the script.

<xid responsepad>
/ product = responsepad
</xid>

The following sets the default input device for responding to the XID response device that is plugged into the
computer (i.e., RB-Series or Lumina response pad).

<defaults>
/ inputdevice = XID
</defaults>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 212

Special characters
When you are creating text items or instruction pages, some characters require special treatment. For
example, imagine that you are creating a text stimulus that contains quotes. Quotes play a special role in
Inquisit syntax of marking the beginning and the end of a stimulus item, so Inquisit needs away to distinguish
quotes that are part of the item from those that indicate the beginning and end. If a quote is preceded by the
escape character '~', this tells Inquisit that the quote is not a delimiter, but should be included in the item.

For example, the following text stimulus:

<text mytext>
/ items = ("The man said ~"hello~".")
/ size = (300, 200)
</text>

appears on the screen as

The main said "hello".

The following text stimulus, however, will result in a warning that there is extra text at the end of the item
definition because the quotes are treated as markers of the beginning and end of the item:

<text mytext>
/ items = ("The man said "hello".")
/ size = (300, 200)
</text>

Other special characters that are expressed using the escape character '~' include tabs, newlines, and
carriage returns. The list of special characters is below.

Cha
ract
er

Escape sequence
Appearance on the screen

doub
le
quot
e

~"

literal quote

tab ~t tab space
new
line

~n line break (applies to instruction pages and text stimuli with the size
attribute specified)

Page 213

Inquisit Language Reference

trial element
The trial element controls the timing and the content of stimulus presentation.

Syntax
<trial trialname>
/ beginresponseframe = integer expression
/ beginresponsetime = integer expression
/ branch = [if expression then event]

/ correctmessage = false or true(stimulusname, duration)
/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ datastreams = (eyetracker) or eyetracker or false
/ draw = stimulusname or true(stimulusname) or false
/ dropsources = (stimulus, stimulus, stimulus, ...)
/ droptargets = (stimulus, stimulus, stimulus, ...)

/ errormessage = false or true(stimulusname, duration)
/ inputdevice = modality
/ inputmask = "bit mask"
/ iscorrectresponse = [expression; expression; expression; ...]
/ isvalidresponse = [expression; expression; expression; ...]

/ monkeyresponse = ("string", "string",...) or (scancode, scancode, ...) or
(property, property, ...) or [expression; expression; expression;...]
/ numframes = integer
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ posttrialpause = integer expression

/ posttrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ pretrialpause = integer expression

/ pretrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ recorddata = boolean

/ response = responsename or timeout(milliseconds) or window(center, width,
stimulusname) or responsemode
/ responseinterrupt = mode
/ responsemessage = (responsevalue, stimulusname, duration)
/ responsetrial = (response, trialname)
/ screencapture = boolean
/ showmousecursor = boolean
/ soundcapture = boolean
/ stimulusframes = [framenumber = stimulusname, stimulusname, ...; framenumber

= stimulusname, ...] or [framenumber = list.name] or [framenumber =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stimulustimes = [time = stimulusname, stimulusname, ...; time =

stimulusname, ...] or [time = list.name] or [time =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stop = [expression; expression; expression; ...]
/ timeout = integer expression
/ trialduration = integer expression
/ undodraw = [expression; expression; expression; ...]

/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or

Page 214

(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</trial>

Properties
trial.trialname.beginresponseframe
trial.trialname.beginresponsetime
trial.trialname.correct
trial.trialname.correctcount
trial.trialname.correctstreak
trial.trialname.count
trial.trialname.error
trial.trialname.errorcount
trial.trialname.errorstreak
trial.trialname.inputmask
trial.trialname.inwindow
trial.trialname.lastdroplatency
trial.trialname.lastdropsource
trial.trialname.lastdroptarget
trial.trialname.latency
trial.trialname.maxlatency
trial.trialname.meanlatency
trial.trialname.medianlatency
trial.trialname.minlatency
trial.trialname.name
trial.trialname.percentcorrect
trial.trialname.percentinwindow
trial.trialname.posttrialpause
trial.trialname.pretrialpause
trial.trialname.response
trial.trialname.responsemonitor
trial.trialname.responsetext
trial.trialname.responsex
trial.trialname.responsey
trial.trialname.screencapture
trial.trialname.sdlatency
trial.trialname.showmousecursor
trial.trialname.sumlatency
trial.trialname.timestamp
trial.trialname.totalcorrectcount
trial.trialname.totalcount
trial.trialname.totalerrorcount
trial.trialname.totalmaxlatency
trial.trialname.totalmeanlatency
trial.trialname.totalmedianlatency
trial.trialname.totalminlatency
trial.trialname.totalnuminwindow
trial.trialname.totalpercentcorrect
trial.trialname.totalpercentinwindow
trial.trialname.totalsdlatency
trial.trialname.totalsumlatency
trial.trialname.totaltrialcount
trial.trialname.totalvarlatency
trial.trialname.trialcode
trial.trialname.trialcount
trial.trialname.trialduration
trial.trialname.typename

Page 215

trial.trialname.varlatency

Functions
trial.trialname.clearstimulusframes
trial.trialname.insertstimulusframe
trial.trialname.insertstimulustime
trial.trialname.removestimulusframe
trial.trialname.removestimulustime
trial.trialname.resetstimulusframes
trial.trialname.setstimulusframe
trial.trialname.setstimulustime
trial.trialname.stimulusframe
trial.trialname.stimulustime

Remarks
The trial element is the primary tool for controlling the flow of an experimental task. Trials allow customization
of stimulus presentation, response procedure, time constraints, and response feedback. Each time a trial is
executed, a line of data is written to the data file. Inquisit supports a number of specialized kinds of trials that
provide a simple way to configure specific, commonly used types of tasks. Specialized trials include
openended, likert, and surveypage.

Examples
The following trial runs happytrial if the response is "a" and sadtrial if the response is "b":

<trial mytrial>
/ stimulusframes = [0=sometext]
/ validresponse = ("a", "b")
/ responsetrial = ("a", happytrial)
/ responsetrial = ("b", sadtrial)
</trial>

The following trial presents a rapid series of 5 pictures at 10 millisecond intervals. The subject may respond
by clicking the left or right mouse button. If the left button is clicked, an error message appears. If the right
button is clicked, a correct message appears.

<trial mytrial>
/ stimulustimes = [0=pic1; 10=pic2; 20=pic3; 30=pic4; 40=pic5]
/ inputdevice = mousekey
/ validresponse = (lbuttondown, rbuttondown)
/ errormessage = (redx, 500)
/ correctmessage = (greenstar, 500)
</trial>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 216

Inquisit Language Reference

likert element
The likert element is a specialized trial element for collecting likert ratings.

Syntax
<likert likertname>
/ anchorwidth = width expression
/ beginresponseframe = integer expression
/ beginresponsetime = integer expression
/ branch = [if expression then event]
/ buttonvalues = [point="value", point="value", point="value"]

/ correctmessage = false or true(stimulusname, duration)
/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ datastreams = (eyetracker) or eyetracker or false
/ errormessage = false or true(stimulusname, duration)
/ iscorrectresponse = [expression; expression; expression; ...]
/ isvalidresponse = [expression; expression; expression; ...]
/ labels = ("label", "label", "label", ...)
/ position = (x variable, y variable)

/ monkeyresponse = ("string", "string",...) or (scancode, scancode, ...) or
(property, property, ...) or [expression; expression; expression;...]
/ mouse = boolean
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ numframes = integer
/ numpoints = integer
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ posttrialpause = integer expression

/ posttrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ pretrialpause = integer expression

/ pretrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ quit = [expression; expression; expression; ...]
/ recorddata = boolean

/ response = responsename or timeout(milliseconds) or window(center, width,
stimulusname) or responsemode
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ responseinterrupt = mode
/ responsemessage = (responsevalue, stimulusname, duration)
/ responsetrial = (response, trialname)
/ screencapture = boolean
/ showmousecursor = boolean
/ skip = [expression; expression; expression; ...]
/ stimulusframes = [framenumber = stimulusname, stimulusname, ...; framenumber

= stimulusname, ...] or [framenumber = list.name] or [framenumber =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stimulustimes = [time = stimulusname, stimulusname, ...; time =

stimulusname, ...] or [time = list.name] or [time =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stop = [expression; expression; expression; ...]
/ timeout = integer expression

Page 217

/ trialduration = integer expression
</likert>

Properties
likert.likertname.anchorwidth
likert.likertname.beginresponseframe
likert.likertname.beginresponsetime
likert.likertname.correct
likert.likertname.correctcount
likert.likertname.correctstreak
likert.likertname.count
likert.likertname.error
likert.likertname.errorcount
likert.likertname.errorstreak
likert.likertname.fontheight
likert.likertname.inputmask
likert.likertname.inwindow
likert.likertname.latency
likert.likertname.maxlatency
likert.likertname.meanlatency
likert.likertname.medianlatency
likert.likertname.minlatency
likert.likertname.name
likert.likertname.numpoints
likert.likertname.percentcorrect
likert.likertname.percentinwindow
likert.likertname.posttrialpause
likert.likertname.pretrialpause
likert.likertname.response
likert.likertname.responsetext
likert.likertname.responsex
likert.likertname.responsey
likert.likertname.scalewidth
likert.likertname.sdlatency
likert.likertname.sumlatency
likert.likertname.timestamp
likert.likertname.totalcorrectcount
likert.likertname.totalcount
likert.likertname.totalerrorcount
likert.likertname.totalmaxlatency
likert.likertname.totalmeanlatency
likert.likertname.totalmedianlatency
likert.likertname.totalminlatency
likert.likertname.totalnuminwindow
likert.likertname.totalpercentcorrect
likert.likertname.totalpercentinwindow
likert.likertname.totalsdlatency
likert.likertname.totalsumlatency
likert.likertname.totaltrialcount
likert.likertname.totalvarlatency
likert.likertname.trialcode
likert.likertname.trialcount
likert.likertname.trialduration
likert.likertname.typename
likert.likertname.varlatency

Page 218

Functions
likert.likertname.clearstimulusframes
likert.likertname.insertstimulusframe
likert.likertname.insertstimulustime
likert.likertname.removestimulusframe
likert.likertname.removestimulustime
likert.likertname.resetstimulusframes
likert.likertname.setstimulusframe
likert.likertname.setstimulustime
likert.likertname.stimulusframe
likert.likertname.stimulustime

Remarks
The likert element controls the timing and the content of stimulus presentation as well as the appearance and
behavior of the likert scale used to obtain ratings. Every time a likert element is executed, a line of data is
written to the data file. Likert supports responding by keyboard (number and arrow keys to select a response,
and ENTER key to submit it) or mouse (click the response button to submit a response). The default is
mouse input.

Examples
The following shows a five point likert scale at the bottom of the screen with evaluative labels:

<likert ratingquestion>
/ stimulusframes=[1=sometext]
/ anchors=[1="excellent"; 2="good"; 3="satisfactory"; 4="bad";
5="aweful"]
/ position=(50, 90)
</likert>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 219

Inquisit Language Reference

openended element
The openended element is a specialized trial element for gathering free recall, openended responses.

Syntax
<openended openendedname>
/ beginresponseframe = integer expression
/ beginresponsetime = integer expression
/ branch = [if expression then event]
/ buttonlabel = "string"
/ charlimit = integer

/ correctmessage = false or true(stimulusname, duration)
/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ datastreams = (eyetracker) or eyetracker or false
/ defaultresponse = "text" or property or expression
/ errormessage = false or true(stimulusname, duration)
/ iscorrectresponse = [expression; expression; expression; ...]
/ isvalidresponse = [expression; expression; expression; ...]
/ linelength = integer

/ mask = constraint or regular expression
/ monkeyresponse = ("string", "string",...) or (scancode, scancode, ...) or
(property, property, ...) or [expression; expression; expression;...]
/ mouse = boolean
/ multiline = boolean
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ numframes = integer
/ numlines = integer
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ position = (x value, y value)
/ posttrialpause = integer expression

/ posttrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ pretrialpause = integer expression

/ pretrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ quit = [expression; expression; expression; ...]
/ range = (minimum, maximum)
/ recorddata = boolean
/ required = boolean

/ response = responsename or timeout(milliseconds) or window(center, width,
stimulusname) or responsemode
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ responseinterrupt = mode
/ responsemessage = (responsevalue, stimulusname, duration)
/ responsetrial = (response, trialname)
/ screencapture = boolean
/ showmousecursor = boolean
/ size = (width variable, height variable)
/ skip = [expression; expression; expression; ...]
/ stimulusframes = [framenumber = stimulusname, stimulusname, ...; framenumber

Page 220

= stimulusname, ...] or [framenumber = list.name] or [framenumber =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stimulustimes = [time = stimulusname, stimulusname, ...; time =

stimulusname, ...] or [time = list.name] or [time =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stop = [expression; expression; expression; ...]
/ timeout = integer expression
/ trialduration = integer expression

/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</openended>

Properties
openended.openendedname.beginresponseframe
openended.openendedname.beginresponsetime
openended.openendedname.buttonlabel
openended.openendedname.charlimit
openended.openendedname.correct
openended.openendedname.correctcount
openended.openendedname.correctstreak
openended.openendedname.count
openended.openendedname.defaultresponse
openended.openendedname.error
openended.openendedname.errorcount
openended.openendedname.errorstreak
openended.openendedname.fontheight
openended.openendedname.height
openended.openendedname.heightpct
openended.openendedname.heightpx
openended.openendedname.inputmask
openended.openendedname.inwindow
openended.openendedname.latency
openended.openendedname.maxlatency
openended.openendedname.maxvalue
openended.openendedname.meanlatency
openended.openendedname.medianlatency
openended.openendedname.minlatency
openended.openendedname.minvalue
openended.openendedname.multiline
openended.openendedname.name
openended.openendedname.percentcorrect
openended.openendedname.percentinwindow
openended.openendedname.posttrialpause
openended.openendedname.pretrialpause
openended.openendedname.required
openended.openendedname.response
openended.openendedname.responsetext
openended.openendedname.responsex
openended.openendedname.responsey
openended.openendedname.sdlatency
openended.openendedname.sumlatency
openended.openendedname.timestamp
openended.openendedname.totalcorrectcount
openended.openendedname.totalcount
openended.openendedname.totalerrorcount

Page 221

openended.openendedname.totalmaxlatency
openended.openendedname.totalmeanlatency
openended.openendedname.totalmedianlatency
openended.openendedname.totalminlatency
openended.openendedname.totalnuminwindow
openended.openendedname.totalpercentcorrect
openended.openendedname.totalpercentinwindow
openended.openendedname.totalsdlatency
openended.openendedname.totalsumlatency
openended.openendedname.totaltrialcount
openended.openendedname.totalvarlatency
openended.openendedname.trialcode
openended.openendedname.trialcount
openended.openendedname.trialduration
openended.openendedname.typename
openended.openendedname.varlatency
openended.openendedname.width
openended.openendedname.widthpct
openended.openendedname.widthpx
openended.openendedname.xpct
openended.openendedname.xpx
openended.openendedname.ypct
openended.openendedname.ypx

Functions
openended.openendedname.clearstimulusframes
openended.openendedname.insertstimulusframe
openended.openendedname.insertstimulustime
openended.openendedname.removestimulusframe
openended.openendedname.removestimulustime
openended.openendedname.resetstimulusframes
openended.openendedname.setstimulusframe
openended.openendedname.setstimulustime
openended.openendedname.stimulusframe
openended.openendedname.stimulustime

Remarks
The openended element controls the timing and the content of stimulus presentation as well as how
open-ended responses are obtained. Every time a openended element is executed, a line of data is written to
the data file.

The respondent can advance past this trial by hitting ENTER if openended is single line expecting keyboard
input, and Ctrl+ENTER if it's multiline or set to mouse input. The default input for openended is mouse input,
which enables the respondent to advance by clicking the openended element's button.

Examples
The following displays a text entry box at the bottom of the screen, sets the line length to 40 characters, and
the total number of lines in the box to 3:

<openended question>
/ stimulusframes=[1=sometext]
/ position = (50, 90)

Page 222

/ linelength = 40
/ numlines = 3
</openended>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 223

Inquisit Language Reference

surveypage element
The surveypage element presents a page of survey questions.

Syntax
<surveypage surveypagename>
/ backbuttonposition = (x value, y value)
/ backlabel = "label"
/ branch = [if expression then event]
/ caption = "text"

/ datastreams = (eyetracker) or eyetracker or false
/ finishlabel = "label"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ inputmask = "bit mask"
/ itemfontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ itemspacing = height or expression
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ navigationbuttonsize = (width variable, height variable)
/ nextbuttonposition = (x value, y value)
/ nextlabel = "label"
/ numframes = integer
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ orientation = layout
/ posttrialpause = integer expression

/ posttrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ pretrialpause = integer expression

/ pretrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ questions = [questionnumber, questionnumber = questionname;
questionnumber-questionnumber = selectmode(questionname, questionname,...);
questionnumber, questionnumber-questionnumber = questionname]
/ recorddata = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ screencapture = boolean
/ showbackbutton = boolean
/ showpagenumbers = boolean
/ showquestionnumbers = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ stimulusframes = [framenumber = stimulusname, stimulusname, ...; framenumber

= stimulusname, ...] or [framenumber = list.name] or [framenumber =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stimulustimes = [time = stimulusname, stimulusname, ...; time =

stimulusname, ...] or [time = list.name] or [time =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stop = [expression; expression; expression; ...]
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ timeout = integer expression

/ txcolor = (red value, green value, blue value) or color name or color value
</surveypage>

Page 224

Properties
surveypage.surveypagename.backlabel
surveypage.surveypagename.caption
surveypage.surveypagename.correct
surveypage.surveypagename.correctcount
surveypage.surveypagename.correctstreak
surveypage.surveypagename.count
surveypage.surveypagename.currentquestionnumber
surveypage.surveypagename.error
surveypage.surveypagename.errorcount
surveypage.surveypagename.errorstreak
surveypage.surveypagename.finishlabel
surveypage.surveypagename.fontheight
surveypage.surveypagename.inputmask
surveypage.surveypagename.inwindow
surveypage.surveypagename.itemfontheight
surveypage.surveypagename.itemspacing
surveypage.surveypagename.latency
surveypage.surveypagename.leftmargin
surveypage.surveypagename.maxlatency
surveypage.surveypagename.meanlatency
surveypage.surveypagename.medianlatency
surveypage.surveypagename.minlatency
surveypage.surveypagename.name
surveypage.surveypagename.navigationbuttonheight
surveypage.surveypagename.navigationbuttonwidth
surveypage.surveypagename.nextlabel
surveypage.surveypagename.percentcorrect
surveypage.surveypagename.percentinwindow
surveypage.surveypagename.posttrialpause
surveypage.surveypagename.pretrialpause
surveypage.surveypagename.response
surveypage.surveypagename.responsefontheight
surveypage.surveypagename.rightmargin
surveypage.surveypagename.sdlatency
surveypage.surveypagename.showbackbutton
surveypage.surveypagename.showpagenumbers
surveypage.surveypagename.showquestionnumbers
surveypage.surveypagename.subcaption
surveypage.surveypagename.subcaptionfontheight
surveypage.surveypagename.sumlatency
surveypage.surveypagename.topmargin
surveypage.surveypagename.totalcorrectcount
surveypage.surveypagename.totalcount
surveypage.surveypagename.totalerrorcount
surveypage.surveypagename.totalmaxlatency
surveypage.surveypagename.totalmeanlatency
surveypage.surveypagename.totalmedianlatency
surveypage.surveypagename.totalminlatency
surveypage.surveypagename.totalnuminwindow
surveypage.surveypagename.totalpercentcorrect
surveypage.surveypagename.totalpercentinwindow
surveypage.surveypagename.totalsdlatency
surveypage.surveypagename.totalsumlatency
surveypage.surveypagename.totaltrialcount
surveypage.surveypagename.totalvarlatency
surveypage.surveypagename.trialcode

Page 225

surveypage.surveypagename.trialcount
surveypage.surveypagename.trialduration
surveypage.surveypagename.typename
surveypage.surveypagename.varlatency

Functions
surveypage.surveypagename.clearstimulusframes
surveypage.surveypagename.insertstimulusframe
surveypage.surveypagename.insertstimulustime
surveypage.surveypagename.removestimulusframe
surveypage.surveypagename.removestimulustime
surveypage.surveypagename.resetstimulusframes
surveypage.surveypagename.setstimulusframe
surveypage.surveypagename.setstimulustime
surveypage.surveypagename.stimulusframe
surveypage.surveypagename.stimulustime

Remarks
The surveypage element is a specialized type of trial that presents one or more survey questions. A survey
page may be presented as part of a sequence of pages in a survey element, or it can be presented like as a
trial trials in a block element. Survey pages can present multiple choice, free text, and slider questions, as
well as plain text, images, and even rapid sequences of stimuli (pictures, video, text, sound, port signals) just
like regular trials.

Examples
The following surveypage displays three questions:

<surveypage mypage>
/caption = "Please answer the following items to the best of your
ability"
/ questions=[1=q1; 2=q2; 3=q3]
</surveypage>

The following surveypage displays three questions, no back button, a custom label on the next button. At the
end of the page, it sets a custom value based on the response to the first question.

<surveypage mypage>
/caption = "Please answer the following items to the best of your
ability"
/ questions=[1=q1; 2=q2; 3=q3]
/ showbackbutton=false
/ nextlabel="Forward"
/ ontrialend = [if (radiobuttons.q1.response == 1) values.sex =
"female"]
</surveypage>

Send comments on this topic:

Page 226

Copyright Millisecond Software, LLC. All rights reserved.

Page 227

Inquisit Language Reference

response element
The response element specifies the procedure for obtaining and measuring responses.

Syntax
<response responsename>
/ mode = responsemode
/ rwcenter = integer
/ rwdeccondition = [(percentcorrect, latency), (percentcorrect, latency),
...]
/ rwdecunit = integer
/ rwhitduration = integer
/ rwhitstimulus = stimulusname
/ rwinccondition = [(percentcorrect, latency), (percentcorrect, latency),
...]
/ rwincunit = integer
/ rwlatencymetric = latencymetric
/ rwmaxcenter = integer
/ rwmincenter = integer
/ rwmissstimulus = stimulusname
/ rwstimulus = stimulusname
/ rwwidth = integer
/ srsignal = voicesignal
/ timeout = integer expression
</response>

Properties
response.responsename.name
response.responsename.timeout
response.responsename.typename
response.responsename.windowcenter
response.responsename.windowdecthreshold
response.responsename.windowdecunit
response.responsename.windowhitduration
response.responsename.windowincthreshold
response.responsename.windowincunit
response.responsename.windowmaxcenter
response.responsename.windowmincenter
response.responsename.windowoffset
response.responsename.windowonset
response.responsename.windowwidth

Functions
None.

Remarks
Once a response element has been defined, it can be assigned to the response attribute of expt, block, or
trial element in order to define the response procedure. Trial settings taking precedence over block settings,
and block settings take precedence over expt settings.

Page 228

Examples
The following response defines a response window with an initial center of 500 ms and width of 150 ms. A
black exclamation point appears on the screen during the window. If the response is in the window, it turns
green and remains on teh screen for 300 ms. Otherwise it turns red. The window is incremented by 75 ms if
the mean latency for the block is greater than the current center + 50 ms and the percent correct is less than
60%. The window is decremented if the mean latency for the block is 50 ms earlier than the window center
and the percent correct is greater than or equal to 80%. The maximum window center 1000 ms and the
minimum is 200 ms:

<response windowprocedure>
/ mode = window
/ rwcenter = 500
/ rwwidth = 150
/ rwinccondition = [(60, 50)]
/ rwdeccondition = [(80, -50)]
/ rwincunit = 75
/ rwdecunit = 75
/ rwmincenter = 200
/ rwmaxcenter = 1000
/ rwlatencymetric = mean
/ rwstimulus = blackexclamationpoint
/ rwhitstimulus = greenexclamationpoint
/ rwmissstimulus = redexclamationpoint
/ rwhitduration = 300
</response>

The following response specifies that trial advances when either a correct response is given or a two second
timeout elapses.

<response myresponse>
/ mode = correct
/ timeout = 2000
</response>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 229

Keyboard Scan Codes
Inquisit records the Scan Code of the subject's response in the response column of the data file. Each key on
the keyboard has a single, unique scan code, given in the table below.

Scancode Keyboard Key

1 ESC

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 0

12 -

13 =

14 bs

15 Tab

16 Q

17 W

18 E

19 R

20 T

21 Y

22 U

Page 230

23 I

24 O

25 P

26 [

27]

28 Enter

29 CTRL

30 A

31 S

32 D

33 F

34 G

35 H

36 J

37 K

38 L

39 ;

40 '

41 `

42 LShift

43 \

44 Z

45 X

46 C

47 V

48 B

Page 231

49 N

50 M

51 ,

52 .

53 /

54 RShift

55 PrtSc

56 Alt

57 Space

58 Caps

59 F1

60 F2

61 F3

62 F4

63 F5

64 F6

65 F7

66 F8

67 F9

68 F10

69 Num

70 Scroll

71 Home (7)

72 Up (8)

73 PgUp (9)

74 -

Page 232

75 Left (4)

76 Center (5)

77 Right (6)

78 +

79 End (1)

80 Down (2)

81 PgDn (3)

82 Ins

83 Del

Page 233

Inquisit Language Reference

block element
The block element defines a sequence of trials and instruction pages to be run.

Syntax
<block blockname>
/ bgstim = (stimulusname, stimulusname, stimulusname)
/ blockfeedback = (metric, metric, metric, ...)
/ branch = [if expression then event]

/ correctmessage = false or true(stimulusname, duration)
/ correcttarget = (property, target, maxblocks)

/ datastreams = (eyetracker) or eyetracker or false
/ errormessage = false or true(stimulusname, duration)
/ latencytarget = (property, target, maxblocks)
/ onblockbegin = [expression; expression; expression; ...]
/ onblockend = [expression; expression; expression; ...]
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ postinstructions = (pagename, pagename, pagename, ...)
/ preinstructions = (pagename, pagename, pagename, ...)
/ quit = [expression; expression; expression; ...]
/ recorddata = boolean

/ response = responsename or timeout(milliseconds) or window(center, width,
stimulusname) or responsemode
/ screencapture = boolean

/ screencolor = (red value, green value, blue value) or color name or color
value
/ showmousecursor = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ stop = [expression; expression; expression; ...]
/ timeout = integer expression
/ trials = [trialnumber, trialnumber = trialname; trialnumber-trialnumber =
selectmode(trialname, trialname,...); trialnumber, trialnumber-trialnumber =

trialname] or [trialnumber-trialnumber = list.name]
</block>

Properties
block.blockname.correct
block.blockname.correctcount
block.blockname.correctstreak
block.blockname.count
block.blockname.currentblocknumber
block.blockname.currenttrialnumber
block.blockname.elapsedtime
block.blockname.error
block.blockname.errorcount
block.blockname.errorstreak
block.blockname.inwindow
block.blockname.latency
block.blockname.maxlatency
block.blockname.meanlatency
block.blockname.medianlatency

Page 234

block.blockname.minlatency
block.blockname.name
block.blockname.percentcorrect
block.blockname.percentinwindow
block.blockname.recorddata
block.blockname.response
block.blockname.responsemonitor
block.blockname.responsetext
block.blockname.responsex
block.blockname.responsey
block.blockname.screencapture
block.blockname.screencolor
block.blockname.screencolorblue
block.blockname.screencolorgreen
block.blockname.screencolorred
block.blockname.sdlatency
block.blockname.showmousecursor
block.blockname.sumlatency
block.blockname.timeout
block.blockname.timestamp
block.blockname.totalcorrectcount
block.blockname.totalcount
block.blockname.totalerrorcount
block.blockname.totalmaxlatency
block.blockname.totalmeanlatency
block.blockname.totalmedianlatency
block.blockname.totalminlatency
block.blockname.totalnuminwindow
block.blockname.totalpercentcorrect
block.blockname.totalpercentinwindow
block.blockname.totalsdlatency
block.blockname.totalsumlatency
block.blockname.totaltrialcount
block.blockname.totalvarlatency
block.blockname.trialcount
block.blockname.trialscount
block.blockname.typename
block.blockname.varlatency

Functions
None.

Remarks
The primary function of the block element is to define a randomly selected or sequentially ordered set of trials
to run. The block element also controls whether instructions are provided at the beginning and end of the
block, and whether summary performance feedback (average latency, percent correct) is given at the block's
conclusion.

By default, all random selection pools for trials and stimulus items are reset at the end of a block. For
example, if any stimulus items are selected without replacement (the default selection algorithm), all of the
stimuli are replaced into the selection pool after each block is finished. To preserve selection pools across
multiple blocks, use the resetinterval attribute.

Page 235

Examples
The following block runs ten trials, randomly selecting trial1 and trial2 for five trials each. The block also
presents two background stimuli.

<block myblock>
/ trials=[1-10=noreplace(trial1, trial2)]
/ bgstim=(remindertext, instructiontext)
</block>

The following block runs ten trials, selecting trial1 for the first five and trial2 for the second five. Three
instruction pages are displayed before and after the trials are run.

<block myblock>
/ trials=[1-5=trial1; 6-10=trial2]
/ preinstructions=(page1, page2, page3)
/ postinstructions=(page4, page5, page6)
</block>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 236

Inquisit Language Reference

survey element
The survey element defines a sequence of one or more pages containing question and response items.

Syntax
<survey surveyname>
/ backbuttonposition = (x value, y value)
/ backlabel = "label"
/ branch = [if expression then event]
/ file = "location"

/ datastreams = (eyetracker) or eyetracker or false
/ encrypt = true("password") or false
/ finishlabel = "label"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ itemfontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ itemspacing = height or expression
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ navigationbuttonsize = (width variable, height variable)
/ nextbuttonposition = (x value, y value)
/ nextlabel = "label"
/ nextlabel = "label"
/ onblockbegin = [expression; expression; expression; ...]
/ onblockend = [expression; expression; expression; ...]
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ orientation = layout
/ pagefontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ pages = [pagenumber, pagenumber = pagename; pagenumber-pagenumber =
selectmode(pagename, pagename,...); pagenumber, pagenumber-pagenumber =
pagename]
/ password = "string"
/ recorddata = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ screencolor = (red value, green value, blue value) or color name or color
value
/ showbackbutton = boolean
/ showpagenumbers = boolean
/ showquestionnumbers = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ timeout = integer expression

/ txcolor = (red value, green value, blue value) or color name or color value
/ userid = "string"
</survey>

Properties
survey.surveyname.backlabel
survey.surveyname.correct
survey.surveyname.correct
survey.surveyname.correctcount

Page 237

survey.surveyname.correctcount
survey.surveyname.correctstreak
survey.surveyname.correctstreak
survey.surveyname.count
survey.surveyname.count
survey.surveyname.currentblocknumber
survey.surveyname.currentpagenumber
survey.surveyname.currentquestionnumber
survey.surveyname.currenttrialnumber
survey.surveyname.elapsedtime
survey.surveyname.error
survey.surveyname.errorcount
survey.surveyname.errorstreak
survey.surveyname.finishlabel
survey.surveyname.fontheight
survey.surveyname.inwindow
survey.surveyname.inwindow
survey.surveyname.itemfontheight
survey.surveyname.itemspacing
survey.surveyname.latency
survey.surveyname.latency
survey.surveyname.leftmargin
survey.surveyname.maxlatency
survey.surveyname.maxlatency
survey.surveyname.meanlatency
survey.surveyname.meanlatency
survey.surveyname.medianlatency
survey.surveyname.medianlatency
survey.surveyname.minlatency
survey.surveyname.minlatency
survey.surveyname.name
survey.surveyname.name
survey.surveyname.navigationbuttonheight
survey.surveyname.navigationbuttonwidth
survey.surveyname.nextlabel
survey.surveyname.pagefontheight
survey.surveyname.percentcorrect
survey.surveyname.percentcorrect
survey.surveyname.percentinwindow
survey.surveyname.percentinwindow
survey.surveyname.recorddata
survey.surveyname.response
survey.surveyname.responsefontheight
survey.surveyname.rightmargin
survey.surveyname.screencolorblue
survey.surveyname.screencolorblue
survey.surveyname.screencolorgreen
survey.surveyname.screencolorgreen
survey.surveyname.screencolorred
survey.surveyname.screencolorred
survey.surveyname.sdlatency
survey.surveyname.showbackbutton
survey.surveyname.showpagenumbers
survey.surveyname.showquestionnumbers
survey.surveyname.subcaptionfontheight
survey.surveyname.sumlatency
survey.surveyname.topmargin
survey.surveyname.totalcorrectcount
survey.surveyname.totalcount
survey.surveyname.totalerrorcount

Page 238

survey.surveyname.totalmaxlatency
survey.surveyname.totalmeanlatency
survey.surveyname.totalmedianlatency
survey.surveyname.totalminlatency
survey.surveyname.totalnuminwindow
survey.surveyname.totalpercentcorrect
survey.surveyname.totalpercentinwindow
survey.surveyname.totalsdlatency
survey.surveyname.totalsumlatency
survey.surveyname.totaltrialcount
survey.surveyname.totalvarlatency
survey.surveyname.trialcount
survey.surveyname.trialscount
survey.surveyname.trialscount
survey.surveyname.typename
survey.surveyname.typename
survey.surveyname.varlatency

Functions
None.

Remarks

Examples
The following survey contains 3 pages and allows forward navigation only.

<survey customersat>
/ pages=[1=page1; 2=page2; 3=page3]
/ showbackbutton=false
/ finishlabel = "Thank you!"
/ screencolor = white
</survey>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 239

Inquisit Language Reference

instruct element
The instruct element specifies how instruction pages are presented in the script.

Syntax
<instruct>
/ finishlabel = "label"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ inputdevice = modality

/ nextkey = ("character") or (scancode) or (signal)
/ nextlabel = "label"

/ prevkey = ("character") or (scancode) or (signal)
/ prevlabel = "label"

/ screencolor = (red value, green value, blue value) or color name or color
value
/ timeout = integer expression

/ txcolor = (red value, green value, blue value) or color name or color value
/ voiceover = boolena(language, gender, age, rate)
/ wait = integer
/ windowsize = (width variable, height variable)
</instruct>

Properties
instruct.backlabel
instruct.finishlabel
instruct.fontheight
instruct.height
instruct.heightpct
instruct.heightpx
instruct.name
instruct.nextlabel
instruct.screencolor
instruct.screencolorblue
instruct.screencolorgreen
instruct.screencolorred
instruct.textcolor
instruct.textcolorblue
instruct.textcolorgreen
instruct.textcolorred
instruct.timeout
instruct.typename
instruct.voiceover
instruct.wait
instruct.width
instruct.widthpct
instruct.widthpx

Functions

Page 240

None.

Remarks
The instruct element allows customization of how instruction pages are displayed on the screen and the
means by which subjects can navigate backwards and forwards through the pages. Only one instruct element
may be defined in a script.

Examples
The following sets the font and size of the instruction pages and indicates that the page must be displayed for
at least one second before the participant can advance.

<instruct>
/ fontstyle = ("Verdana", 12pt, true)
/ windowsize = (800px, 600px)
/ wait = 1000
</instruct>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 241

Inquisit Language Reference

page element
The page element defines a page of instruction or feedback text.

Syntax
<page pagename>
This element has no attributes
</page>

Properties
page.pagename.content
page.pagename.expression
page.pagename.name
page.pagename.typename

Functions
None.

Remarks
The page element is used to define simple pages of text to be displayed as instructions using the
preinstructions or postinstructions attribute. Tab and space characters occuring within the page definition will
also appear in the instruction page as displayed. Line breaks, however, are stripped out prior to display. To
force a line break, use the special character "^".

Inquisit provides built-in support for reporting accuracy, latency and response window measures at the end of
a block of trials using the blockfeedback attribute. The page element also supports customized reporting of a
wide variety of performance statistics factored by trial or block type and aggregated over the course of a
single block or the entire experiment. The current value of a given measure for a given trial or block can be
inserted anywhere within the text of an instruction page by specifying the type of element, element's name,
and the name of the measure as follows:
<% type.name.property %>

The text of pages can be richly formatted using a subset of supported HTML markup tags. For example,
markup tags can be used to make selected words appear in bold, italics, a different font, or a different color.
For more information on formatting options, see Using HTML Markup in Text

Examples
The following page reports various latency measures for a "nonword" trial:

<page report>
^^ Your average response time on nonword trials was <%
trial.nonword.meanlatency %> milliseconds.
^^ Your fastest response on nonword trials was <%
trial.nonword.minlatency %> milliseconds.

Page 242

^^ Your slowest response on nonword trials was <%
trial.nonword.maxlatency %> milliseconds.
</page>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 243

Inquisit Language Reference

htmlpage element
The htmlpage element defines an HTML formatted instruction page.

Syntax
<htmlpage htmlpagename>
/ file = "path"
</htmlpage>

Properties
htmlpage.htmlpagename.file
htmlpage.htmlpagename.name
htmlpage.htmlpagename.typename

Functions
None.

Remarks
The htmlpage element is used to define pages of text to be displayed as instructions using the
preinstructions or postinstructions attribute. The htmlpage element is useful when complete control over
formatting and content of instruction pages is required, otherwise the page element provides an easier way to
display text with basic formatting. The actual content of the page is contained in a separate HTML file located
on the local machine or the web.

Inquisit provides built-in support for reporting accuracy, latency and response window measures at the end of
a block of trials using the blockfeedback attribute. The htmlpage element also supports customized reporting
of a wide variety of performance statistics factored by trial or block type and aggregated over the course of a
single block or the entire experiment. The current value of a given measure for a given trial or block can be
inserted anywhere within the text of an instruction page by specifying the type of element, element's name,
and the name of the measure as follows:

<% type.name.property%>

Examples
The following htmlpage consists of content in an html file located on millisecond.com.

<htmlpage intro>
/ file="http://www.millisecond.com/pages/intro.htm"
</htmlpage>

Page 244

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 245

Inquisit Language Reference

batch element
The batch element allows a group of Inquisit scripts to be run in sequence.

Syntax
<batch>
/ directory = "location"
/ file = "path"
/ groupassignment = assignment
/ groups = (integer, integer, integer, ... of modulus)
/ onscriptbegin = value
/ onscriptend = value

/ selectionmode = selectionmode or expression
/ sessions = (integer, integer, integer, ... of modulus)
</batch>

Properties
batch.currentgroupnumber
batch.currentscript
batch.directory
batch.file
batch.groupcount
batch.name
batch.typename

Functions
None.

Remarks
The batch element should be defined in a separate script file. The batch element may not include own script
file in its list of files.

Examples
The following batch runs three scripts files in sequence. The files are located in the same directory as the
batch file.

<batch>
/ file="script1.iqx"
/ file="script2.iqx"
/ file="script3.iqx"
</batch>

The following batch runs three scripts files in sequence subjects with odd numbered group ids. The files are
located in the same directory as the batch file.

Page 246

<batch>
/ subjects=(1 of 2)
/ groupassignment = group
/ file="script1.iqx"
/ file="script2.iqx"
/ file="script3.iqx"
</batch>

The following batch runs three scripts files in the reverse order of the previous example for subjects with even
numbered group ids. The files are located in the same directory as the batch file.

<batch>
/ subjects=(2 of 2)
/ groupassignment = group
/ file="script3.iqx"
/ file="script2.iqx"
/ file="script1.iqx"
</batch>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 247

Inquisit Language Reference

expt element
The expt element defines a sequence of blocks and instruction pages to be run.

Syntax
<expt exptname>
/ blocks = [blocknumber, blocknumber = blockname;blocknumber = list.name;
blocknumber-blocknumber = selectmode(blockname, blockname,...); blocknumber,
blocknumber-blocknumber = blockname]

/ correctmessage = false or true(stimulusname, duration)
/ datastreams = (eyetracker) or eyetracker or false
/ errormessage = false or true(stimulusname, duration)
/ groupassignment = assignment
/ groups = (integer, integer, integer, ... of modulus)
/ onblockbegin = [expression; expression; expression; ...]
/ onblockend = [expression; expression; expression; ...]
/ onexptbegin = [expression; expression; expression; ...]
/ onexptend = [expression; expression; expression; ...]
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ postinstructions = (pagename, pagename, pagename, ...)
/ preinstructions = (pagename, pagename, pagename, ...)
/ quit = [expression; expression; expression; ...]
/ recorddata = boolean

/ response = responsename or timeout(milliseconds) or window(center, width,
stimulusname) or responsemode
/ screencapture = boolean
/ sessions = (integer, integer, integer, ... of modulus)
/ showmousecursor = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ stop = [expression; expression; expression; ...]
/ subjects = (integer, integer, integer, ... of modulus)
/ timeout = integer expression
</expt>

Properties
expt.exptname.blockscount
expt.exptname.correct
expt.exptname.correctcount
expt.exptname.correctstreak
expt.exptname.count
expt.exptname.currentblocknumber
expt.exptname.currentgroupnumber
expt.exptname.currenttrialnumber
expt.exptname.elapsedtime
expt.exptname.error
expt.exptname.errorcount
expt.exptname.errorstreak
expt.exptname.groupcount
expt.exptname.inwindow
expt.exptname.latency
expt.exptname.maxlatency
expt.exptname.meanlatency

Page 248

expt.exptname.medianlatency
expt.exptname.minlatency
expt.exptname.name
expt.exptname.percentcorrect
expt.exptname.percentinwindow
expt.exptname.recorddata
expt.exptname.response
expt.exptname.responsemonitor
expt.exptname.responsetext
expt.exptname.responsex
expt.exptname.responsey
expt.exptname.screencapture
expt.exptname.sdlatency
expt.exptname.showmousecursor
expt.exptname.sumlatency
expt.exptname.timeout
expt.exptname.timestamp
expt.exptname.totalcorrectcount
expt.exptname.totalcount
expt.exptname.totalerrorcount
expt.exptname.totalmaxlatency
expt.exptname.totalmeanlatency
expt.exptname.totalmedianlatency
expt.exptname.totalminlatency
expt.exptname.totalnuminwindow
expt.exptname.totalpercentcorrect
expt.exptname.totalpercentinwindow
expt.exptname.totalsdlatency
expt.exptname.totalsumlatency
expt.exptname.totaltrialcount
expt.exptname.totalvarlatency
expt.exptname.trialcount
expt.exptname.typename
expt.exptname.varlatency

Functions
None.

Remarks
The primary function of the expt element is to define a randomly selected or sequentially ordered set of
blocks to run. The expt element also controls whether instructions are provided at the beginning and end of
the script.

Examples
The following expt runs one practice block followed by ten test blocks. An "intro" instruction page is
displayed at the beginning of the script, and an "end" instruction page is displayed at the end.

<expt>
/ blocks=[1=practice; 2-11=test]
/ preinstructions = (intro)
/ postinstructions = (end)
</expt>

Page 249

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 250

Inquisit Language Reference

include element
The include element lists other script files containing elements to be used in the current script.

Syntax
<include includename>
/ file = "path"
/ file = "path"
/ file = "path"
/ precondition = [expression; expression; expression; ...]
</include>

Properties
include.includename.file
include.includename.name
include.includename.typename

Functions
None.

Remarks
The include element provides a convenient way to reuse elements such as stimuli or instruction pages in
multiple scripts. Rather than copying the elements into every script, the elements can be defined in a
separate file and referenced via the include element. All files listed in the include element are effectively
pasted into the current script file when Inquisit parses the script.

Examples
The following example conditionally includes a script with an item element containing .wmv video files for
Windows and .mov files for Mac.

<include>
/ precondition=[computer.platform == "win"]
/ file="wmv_videos.iqx"
</include>

<include>
/ precondition=[computer.platform == "mac"]
/ file="mov_videos.iqx"
</include>

Page 251

The following includes stimuli and instruction pages defined in separate script files.

<include>
/ file = "c:\shared elements\stimuli.iqx"
/ file = "c:\shared elements\instructions.iqx"
</include>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 252

Inquisit Language Reference

data element
The data element specifies how data is recorded in the data file.

Syntax
<data>
/ columns = (columnname, columnname, columnname, property, property, property)
/ file = "location"

/ encrypt = true("password") or false
/ filter = [expression; expression; expression; ...]
/ labels = ("label", "label", "label", ...)
/ password = "string"
/ separatefiles = boolean
/ userid = "string"
</data>

Properties
data.encrypt
data.encryptionkey
data.file
data.name
data.password
data.recorddata
data.typename
data.userid

Functions
None.

Remarks
The data element allows customization of data recording, including specifying which data is recorded, the
format of the data file, and the location where the data are saved. If no data element is defined, Inquisit uses
a default data recording scheme.

Examples
The following records 10 columns to an encrypted data file on an web server.

<data>
/ columns=[subject, blockcode, trialcode, trialnum, latency,
response, stimulusitem, stimulusnumber, stimulusitem,
stimulusnumber]
/ file="https://storage.millisecond.com/mydata/"
/ userid="sean"
/ password="open sesame"

Page 253

/ encrypt=true("password")
</data>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 254

Inquisit Language Reference

summarydata element
The summarydata element specifies a set of summary data for to be recorded for a given participant.

Syntax
<summarydata>
/ file = "location"

/ encrypt = true("password") or false
/ password = "string"
/ separatefiles = boolean
/ columns = (property, property, property, ...)
/ userid = "string"
</summarydata>

Properties
summarydata.encrypt
summarydata.encryptionkey
summarydata.file
summarydata.name
summarydata.password
summarydata.recorddata
summarydata.typename
summarydata.userid

Functions
None.

Remarks
The summarydata element enables a script to record a single row of summary data for each participant that
runs a script. Typically, the summarydata element is used to save metrics that capture participants' overall
performance on the script. The summary statics are saved to a separate file as the raw, trail-by-trial data file.
Recording all of the relevant performance metrics into a summary data file can simplify data analysis by
avoiding the often complicated process of calculating these metrics from the raw data. Summary data are
saved as tab-delimited text.

Examples
The following records the subject id, start date, start time, and three performance metrics for each participant.

<summarydata>
/ columns=[script.subjectid, script.startdate, script.starttime,
expressions.da, expressions.db, expressions.d]
/ file="iat_summary.iqdat"
</summarydata>

Page 255

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 256

Inquisit Language Reference

monkey element
The monkey element enables you to customize the performance of the Inquisit test monkey.

Syntax
<monkey>

/ latencydistribution = constant(mean) or normal(mean, sd) or uniform(min,
max)
/ percentcorrect = integer
</monkey>

Properties
monkey.maxlatency
monkey.meanlatency
monkey.minlatency
monkey.monkeymode
monkey.percentcorrect
monkey.sdlatency

Functions
None.

Remarks
For help on using the monkey, see How to Test an Experiment. Please treat the monkey kindly.

Examples
The following specifies that the monkey's latencies are randomly selected from a normal distibution, with a
mean of 200 and standard deviation of 10. Each response is 95% likely to be correct.

<monkey>
/ latencydistribution = normal(200, 10)
/ percentcorrect = 95
</monkey>

The following specifies that the monkey's latencies are randomly selected from a uniform distribution ranging
from 100 to 500 milliseconds. Each response is 50% likely to be correct.

<monkey>
/ latencydistribution = uniform(100, 500)
/ percentcorrect = 50
</monkey>

The following specifies that the monkey's latencies are always 250 milliseconds. Each response is 75%
likely to be correct.

Page 257

<monkey>
/ latencydistribution = constant(250)
/ percentcorrect = 75
</monkey>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 258

Data Format and Default Columns
Data are written in a non-proprietary UTF-8 tab-delimited text format to the file specified in the message
window that appears at the bottom of the script editor. If the data file already contains data, the new data are
appended to existing data. A separate line of data is written for each trial in the experiment.

The default order of variables values on each line of data is as follows:

1. Current date (mmddyy)
2. Experiment starting time (hh:mm)
3. Group id
4. Subject id
5. Block number
6. Trial number
7. Trial code
8. Pretrialpause (ms)
9. Posttrialpause (ms)
10. Scan code of the key with which the subject responded
11. Whether or not the given response was the correct response
12. Response latency (ms following the end of the last display frame).
13. Response window center (milliseconds following the end of the last display frame; 0 if no

response window is used).
14. The next N variables are the item numbers of the stimuli shown on each trial recorded in the order

in which those stimuli were presented. N is equal to the greatest number of stimuli presented on
any single trial defined in the script. For trials on which less than N stimuli were presented, a
value of 0 is recorded in the extra columns.

To customize the way data is written to file, define a data element and set its attributes according to
preference.

Page 259

Inquisit Language Reference

caption element
The caption element defines a survey item consisting of just a caption and subcaption.

Syntax
<caption captionname>
/ caption = "text"

/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ position = (x value, y value)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
</caption>

Properties
caption.captionname.caption
caption.captionname.fontheight
caption.captionname.height
caption.captionname.heightpct
caption.captionname.heightpx
caption.captionname.hposition
caption.captionname.name
caption.captionname.subcaption
caption.captionname.subcaptionfontheight
caption.captionname.typename
caption.captionname.vposition
caption.captionname.width
caption.captionname.widthpct
caption.captionname.widthpx
caption.captionname.xpct
caption.captionname.xpx
caption.captionname.ypct
caption.captionname.ypx

Functions
None.

Remarks
The caption element allows you to insert additional text and instructions into a survey that do not require a
response from participants.

Page 260

Examples
The following caption item displays a caption and subcaption.

<caption q1>
/ caption="Remember to tell the experimenter when you are finished
with the survey"
/ subcaption="(The experimenter is sitting in the adjacent room.)"
</caption>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 261

Inquisit Language Reference

checkboxes element
The checkboxes element defines a survey item that allows respondents to check off one or more options.

Syntax
<checkboxes checkboxesname>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ monkeyresponse = ("string", "string",...) or (scancode, scancode, ...) or
(property, property, ...) or [expression; expression; expression;...]
/ options = ("label", "label", "label", ...)
/ optionvalues = ("value", "value", "value", ...)
/ order = order mode
/ orientation = layoutoption

/ other = "caption" or textbox
/ position = (x value, y value)
/ range = (minimum, maximum)
/ required = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</checkboxes>

Properties
checkboxes.checkboxesname.caption
checkboxes.checkboxesname.fontheight
checkboxes.checkboxesname.height
checkboxes.checkboxesname.heightpct
checkboxes.checkboxesname.heightpx
checkboxes.checkboxesname.hposition
checkboxes.checkboxesname.maxvalue
checkboxes.checkboxesname.minvalue
checkboxes.checkboxesname.name
checkboxes.checkboxesname.required
checkboxes.checkboxesname.response
checkboxes.checkboxesname.responsefontheight

Page 262

checkboxes.checkboxesname.selected
checkboxes.checkboxesname.selectedcaption
checkboxes.checkboxesname.selectedcount
checkboxes.checkboxesname.selectedcount
checkboxes.checkboxesname.selectedvalue
checkboxes.checkboxesname.subcaption
checkboxes.checkboxesname.subcaptionfontheight
checkboxes.checkboxesname.typename
checkboxes.checkboxesname.vposition
checkboxes.checkboxesname.width
checkboxes.checkboxesname.width
checkboxes.checkboxesname.widthpct
checkboxes.checkboxesname.widthpx
checkboxes.checkboxesname.xpct
checkboxes.checkboxesname.xpx
checkboxes.checkboxesname.ypct
checkboxes.checkboxesname.ypx

Functions
None.

Remarks
Checkboxes are useful for questions in which the respondent may choose more than one option.

Examples
The following checkbox item requires the respondent to select at least one option.

<checkboxes q1>
/ caption="Pick one or more of the following numbers:"
/ required = true
/ options=("one", "eight", "seventy-two")
</checkboxes>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 263

Inquisit Language Reference

dropdown element
The dropdown element defines a survey item in which respondents select an option from a dropdown list.

Syntax
<dropdown dropdownname>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ listsize = (width, height)
/ options = ("label", "label", "label", ...)
/ optionvalues = ("value", "value", "value", ...)
/ order = order mode
/ orientation = layout
/ position = (x value, y value)
/ required = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</dropdown>

Properties
dropdown.dropdownname.caption
dropdown.dropdownname.fontheight
dropdown.dropdownname.height
dropdown.dropdownname.heightpct
dropdown.dropdownname.heightpx
dropdown.dropdownname.hposition
dropdown.dropdownname.listheight
dropdown.dropdownname.listwidth
dropdown.dropdownname.name
dropdown.dropdownname.option
dropdown.dropdownname.optionvalue
dropdown.dropdownname.required
dropdown.dropdownname.response
dropdown.dropdownname.responsefontheight
dropdown.dropdownname.selected
dropdown.dropdownname.selectedcaption

Page 264

dropdown.dropdownname.selectedcount
dropdown.dropdownname.selectedvalue
dropdown.dropdownname.subcaption
dropdown.dropdownname.subcaptionfontheight
dropdown.dropdownname.typename
dropdown.dropdownname.vposition
dropdown.dropdownname.width
dropdown.dropdownname.width
dropdown.dropdownname.widthpct
dropdown.dropdownname.widthpx
dropdown.dropdownname.xpct
dropdown.dropdownname.xpx
dropdown.dropdownname.ypct
dropdown.dropdownname.ypx

Functions
None.

Remarks
Dropdowns provide a space efficient user interface for selecting from mutually exclusive options.

Examples
The following dropdown item requires the respondent to select at least one option.

<dropdown q1>
/ caption="Who was the first president of the United States:"
/ options=("George Washington", "Abraham Lincoln", "Thomas
Jefferson")
/ required=true
</dropdown>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 265

Inquisit Language Reference

image element
The image element defines a survey item that presents a captioned image.

Syntax
<image imagename>
/ caption = "text"

/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ imagesize = (width variable, height variable)

/ items = itemname or ("path", "path", "path",...)
/ position = (x value, y value)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
</image>

Properties
image.imagename.caption
image.imagename.fontheight
image.imagename.height
image.imagename.heightpct
image.imagename.heightpx
image.imagename.hposition
image.imagename.imageheight
image.imagename.imagewidth
image.imagename.name
image.imagename.subcaption
image.imagename.subcaptionfontheight
image.imagename.typename
image.imagename.vposition
image.imagename.width
image.imagename.widthpct
image.imagename.widthpx
image.imagename.xpct
image.imagename.xpx
image.imagename.ypct
image.imagename.ypx

Functions
None.

Remarks
The image element allows you to insert an image into a survey that does not require a response from

Page 266

participants.

Examples
The following image item displays a picture of a logo and a caption.

<image q1>
/ caption="Logo for Brand X"
/ items=("logox.jpg")
</image>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 267

Inquisit Language Reference

listbox element
The listbox element defines a survey item in which respondents select an option from a list.

Syntax
<listbox listboxname>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ listsize = (width, height)
/ options = ("label", "label", "label", ...)
/ optionvalues = ("value", "value", "value", ...)
/ order = order mode
/ orientation = layout
/ position = (x value, y value)
/ required = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</listbox>

Properties
listbox.listboxname.caption
listbox.listboxname.fontheight
listbox.listboxname.height
listbox.listboxname.heightpct
listbox.listboxname.heightpx
listbox.listboxname.hposition
listbox.listboxname.listheight
listbox.listboxname.listwidth
listbox.listboxname.name
listbox.listboxname.option
listbox.listboxname.optionvalue
listbox.listboxname.required
listbox.listboxname.response
listbox.listboxname.responsefontheight
listbox.listboxname.selected
listbox.listboxname.selectedcaption

Page 268

listbox.listboxname.selectedcount
listbox.listboxname.selectedvalue
listbox.listboxname.subcaption
listbox.listboxname.subcaptionfontheight
listbox.listboxname.typename
listbox.listboxname.vposition
listbox.listboxname.width
listbox.listboxname.width
listbox.listboxname.widthpct
listbox.listboxname.widthpx
listbox.listboxname.xpct
listbox.listboxname.xpx
listbox.listboxname.ypct
listbox.listboxname.ypx

Functions
None.

Remarks

Examples
The following listbox item requires the respondent to select at least one option.

<listbox q1>
/ caption="Who was the first president of the United States:"
/ options=("George Washington", "Abraham Lincoln", "Thomas
Jefferson")
/ required=true
</listbox>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 269

Inquisit Language Reference

radiobuttons element
The radiobuttons element defines a survey item in which respondents select from a list of mutually exclusive
options.

Syntax
<radiobuttons radiobuttonsname>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ options = ("label", "label", "label", ...)
/ optionvalues = ("value", "value", "value", ...)
/ order = order mode
/ orientation = layoutoption

/ other = "caption" or textbox
/ position = (x value, y value)
/ required = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</radiobuttons>

Properties
radiobuttons.radiobuttonsname.caption
radiobuttons.radiobuttonsname.fontheight
radiobuttons.radiobuttonsname.height
radiobuttons.radiobuttonsname.heightpct
radiobuttons.radiobuttonsname.heightpx
radiobuttons.radiobuttonsname.hposition
radiobuttons.radiobuttonsname.name
radiobuttons.radiobuttonsname.option
radiobuttons.radiobuttonsname.optionvalue
radiobuttons.radiobuttonsname.required
radiobuttons.radiobuttonsname.response
radiobuttons.radiobuttonsname.responsefontheight
radiobuttons.radiobuttonsname.selected
radiobuttons.radiobuttonsname.selectedcaption

Page 270

radiobuttons.radiobuttonsname.selectedcount
radiobuttons.radiobuttonsname.selectedvalue
radiobuttons.radiobuttonsname.subcaption
radiobuttons.radiobuttonsname.subcaptionfontheight
radiobuttons.radiobuttonsname.typename
radiobuttons.radiobuttonsname.vposition
radiobuttons.radiobuttonsname.width
radiobuttons.radiobuttonsname.width
radiobuttons.radiobuttonsname.widthpct
radiobuttons.radiobuttonsname.widthpx
radiobuttons.radiobuttonsname.xpct
radiobuttons.radiobuttonsname.xpx
radiobuttons.radiobuttonsname.ypct
radiobuttons.radiobuttonsname.ypx

Functions
None.

Remarks

Examples
The following radiobuttons item requires the respondent to select at least one option.

<radiobuttons q1>
/ caption="Who was the first president of the United States:"
/ options=("George Washington", "Abraham Lincoln", "Thomas
Jefferson")
/ required=true
</radiobuttons>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 271

Inquisit Language Reference

slider element
The slider element defines a survey item in which responses are made by sliding a thumb control along a
continuous line.

Syntax
<slider slidername>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ increment = integer
/ labels = ("label", "label", "label", ...)
/ orientation = layout
/ position = (x value, y value)
/ range = (minimum, maximum)
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ showticks = boolean
/ size = (width variable, height variable)
/ slidersize = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</slider>

Properties
slider.slidername.caption
slider.slidername.fontheight
slider.slidername.height
slider.slidername.heightpct
slider.slidername.heightpx
slider.slidername.hposition
slider.slidername.name
slider.slidername.response
slider.slidername.responsefontheight
slider.slidername.sliderheight
slider.slidername.sliderwidth
slider.slidername.subcaption
slider.slidername.subcaptionfontheight
slider.slidername.typename
slider.slidername.vposition
slider.slidername.width

Page 272

slider.slidername.widthpct
slider.slidername.widthpx
slider.slidername.xpct
slider.slidername.xpx
slider.slidername.ypct
slider.slidername.ypx

Functions
None.

Remarks

Examples
The following slider item asks the respondent to rate their feelings from cold to hot.

<slider q1>
/ caption="How do you feel about bananas?"
/ labels=("Cold", "Hot")
/ range = (0, 100)
/ increment = 1
</slider>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 273

Inquisit Language Reference

survey element
The survey element defines a sequence of one or more pages containing question and response items.

Syntax
<survey surveyname>
/ backbuttonposition = (x value, y value)
/ backlabel = "label"
/ branch = [if expression then event]
/ file = "location"

/ datastreams = (eyetracker) or eyetracker or false
/ encrypt = true("password") or false
/ finishlabel = "label"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ itemfontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ itemspacing = height or expression
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ navigationbuttonsize = (width variable, height variable)
/ nextbuttonposition = (x value, y value)
/ nextlabel = "label"
/ nextlabel = "label"
/ onblockbegin = [expression; expression; expression; ...]
/ onblockend = [expression; expression; expression; ...]
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ orientation = layout
/ pagefontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ pages = [pagenumber, pagenumber = pagename; pagenumber-pagenumber =
selectmode(pagename, pagename,...); pagenumber, pagenumber-pagenumber =
pagename]
/ password = "string"
/ recorddata = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)

/ screencolor = (red value, green value, blue value) or color name or color
value
/ showbackbutton = boolean
/ showpagenumbers = boolean
/ showquestionnumbers = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ timeout = integer expression

/ txcolor = (red value, green value, blue value) or color name or color value
/ userid = "string"
</survey>

Properties
survey.surveyname.backlabel
survey.surveyname.correct
survey.surveyname.correct
survey.surveyname.correctcount

Page 274

survey.surveyname.correctcount
survey.surveyname.correctstreak
survey.surveyname.correctstreak
survey.surveyname.count
survey.surveyname.count
survey.surveyname.currentblocknumber
survey.surveyname.currentpagenumber
survey.surveyname.currentquestionnumber
survey.surveyname.currenttrialnumber
survey.surveyname.elapsedtime
survey.surveyname.error
survey.surveyname.errorcount
survey.surveyname.errorstreak
survey.surveyname.finishlabel
survey.surveyname.fontheight
survey.surveyname.inwindow
survey.surveyname.inwindow
survey.surveyname.itemfontheight
survey.surveyname.itemspacing
survey.surveyname.latency
survey.surveyname.latency
survey.surveyname.leftmargin
survey.surveyname.maxlatency
survey.surveyname.maxlatency
survey.surveyname.meanlatency
survey.surveyname.meanlatency
survey.surveyname.medianlatency
survey.surveyname.medianlatency
survey.surveyname.minlatency
survey.surveyname.minlatency
survey.surveyname.name
survey.surveyname.name
survey.surveyname.navigationbuttonheight
survey.surveyname.navigationbuttonwidth
survey.surveyname.nextlabel
survey.surveyname.pagefontheight
survey.surveyname.percentcorrect
survey.surveyname.percentcorrect
survey.surveyname.percentinwindow
survey.surveyname.percentinwindow
survey.surveyname.recorddata
survey.surveyname.response
survey.surveyname.responsefontheight
survey.surveyname.rightmargin
survey.surveyname.screencolorblue
survey.surveyname.screencolorblue
survey.surveyname.screencolorgreen
survey.surveyname.screencolorgreen
survey.surveyname.screencolorred
survey.surveyname.screencolorred
survey.surveyname.sdlatency
survey.surveyname.showbackbutton
survey.surveyname.showpagenumbers
survey.surveyname.showquestionnumbers
survey.surveyname.subcaptionfontheight
survey.surveyname.sumlatency
survey.surveyname.topmargin
survey.surveyname.totalcorrectcount
survey.surveyname.totalcount
survey.surveyname.totalerrorcount

Page 275

survey.surveyname.totalmaxlatency
survey.surveyname.totalmeanlatency
survey.surveyname.totalmedianlatency
survey.surveyname.totalminlatency
survey.surveyname.totalnuminwindow
survey.surveyname.totalpercentcorrect
survey.surveyname.totalpercentinwindow
survey.surveyname.totalsdlatency
survey.surveyname.totalsumlatency
survey.surveyname.totaltrialcount
survey.surveyname.totalvarlatency
survey.surveyname.trialcount
survey.surveyname.trialscount
survey.surveyname.trialscount
survey.surveyname.typename
survey.surveyname.typename
survey.surveyname.varlatency

Functions
None.

Remarks

Examples
The following survey contains 3 pages and allows forward navigation only.

<survey customersat>
/ pages=[1=page1; 2=page2; 3=page3]
/ showbackbutton=false
/ finishlabel = "Thank you!"
/ screencolor = white
</survey>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 276

Inquisit Language Reference

surveypage element
The surveypage element presents a page of survey questions.

Syntax
<surveypage surveypagename>
/ backbuttonposition = (x value, y value)
/ backlabel = "label"
/ branch = [if expression then event]
/ caption = "text"

/ datastreams = (eyetracker) or eyetracker or false
/ finishlabel = "label"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ inputmask = "bit mask"
/ itemfontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ itemspacing = height or expression
/ navigationbuttonfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ navigationbuttonsize = (width variable, height variable)
/ nextbuttonposition = (x value, y value)
/ nextlabel = "label"
/ numframes = integer
/ ontrialbegin = [expression; expression; expression; ...]
/ ontrialend = [expression; expression; expression; ...]
/ orientation = layout
/ posttrialpause = integer expression

/ posttrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ pretrialpause = integer expression

/ pretrialsignal = (modality, signal) or (mouse, stimulusname) or (mouse,
mouseevent)
/ questions = [questionnumber, questionnumber = questionname;
questionnumber-questionnumber = selectmode(questionname, questionname,...);
questionnumber, questionnumber-questionnumber = questionname]
/ recorddata = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ screencapture = boolean
/ showbackbutton = boolean
/ showpagenumbers = boolean
/ showquestionnumbers = boolean
/ skip = [expression; expression; expression; ...]
/ soundcapture = boolean
/ stimulusframes = [framenumber = stimulusname, stimulusname, ...; framenumber

= stimulusname, ...] or [framenumber = list.name] or [framenumber =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stimulustimes = [time = stimulusname, stimulusname, ...; time =

stimulusname, ...] or [time = list.name] or [time =
selectionmode(stimulusname, stimulusname, stimulusname, ...)]
/ stop = [expression; expression; expression; ...]
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ timeout = integer expression

/ txcolor = (red value, green value, blue value) or color name or color value
</surveypage>

Page 277

Properties
surveypage.surveypagename.backlabel
surveypage.surveypagename.caption
surveypage.surveypagename.correct
surveypage.surveypagename.correctcount
surveypage.surveypagename.correctstreak
surveypage.surveypagename.count
surveypage.surveypagename.currentquestionnumber
surveypage.surveypagename.error
surveypage.surveypagename.errorcount
surveypage.surveypagename.errorstreak
surveypage.surveypagename.finishlabel
surveypage.surveypagename.fontheight
surveypage.surveypagename.inputmask
surveypage.surveypagename.inwindow
surveypage.surveypagename.itemfontheight
surveypage.surveypagename.itemspacing
surveypage.surveypagename.latency
surveypage.surveypagename.leftmargin
surveypage.surveypagename.maxlatency
surveypage.surveypagename.meanlatency
surveypage.surveypagename.medianlatency
surveypage.surveypagename.minlatency
surveypage.surveypagename.name
surveypage.surveypagename.navigationbuttonheight
surveypage.surveypagename.navigationbuttonwidth
surveypage.surveypagename.nextlabel
surveypage.surveypagename.percentcorrect
surveypage.surveypagename.percentinwindow
surveypage.surveypagename.posttrialpause
surveypage.surveypagename.pretrialpause
surveypage.surveypagename.response
surveypage.surveypagename.responsefontheight
surveypage.surveypagename.rightmargin
surveypage.surveypagename.sdlatency
surveypage.surveypagename.showbackbutton
surveypage.surveypagename.showpagenumbers
surveypage.surveypagename.showquestionnumbers
surveypage.surveypagename.subcaption
surveypage.surveypagename.subcaptionfontheight
surveypage.surveypagename.sumlatency
surveypage.surveypagename.topmargin
surveypage.surveypagename.totalcorrectcount
surveypage.surveypagename.totalcount
surveypage.surveypagename.totalerrorcount
surveypage.surveypagename.totalmaxlatency
surveypage.surveypagename.totalmeanlatency
surveypage.surveypagename.totalmedianlatency
surveypage.surveypagename.totalminlatency
surveypage.surveypagename.totalnuminwindow
surveypage.surveypagename.totalpercentcorrect
surveypage.surveypagename.totalpercentinwindow
surveypage.surveypagename.totalsdlatency
surveypage.surveypagename.totalsumlatency
surveypage.surveypagename.totaltrialcount
surveypage.surveypagename.totalvarlatency
surveypage.surveypagename.trialcode

Page 278

surveypage.surveypagename.trialcount
surveypage.surveypagename.trialduration
surveypage.surveypagename.typename
surveypage.surveypagename.varlatency

Functions
surveypage.surveypagename.clearstimulusframes
surveypage.surveypagename.insertstimulusframe
surveypage.surveypagename.insertstimulustime
surveypage.surveypagename.removestimulusframe
surveypage.surveypagename.removestimulustime
surveypage.surveypagename.resetstimulusframes
surveypage.surveypagename.setstimulusframe
surveypage.surveypagename.setstimulustime
surveypage.surveypagename.stimulusframe
surveypage.surveypagename.stimulustime

Remarks
The surveypage element is a specialized type of trial that presents one or more survey questions. A survey
page may be presented as part of a sequence of pages in a survey element, or it can be presented like as a
trial trials in a block element. Survey pages can present multiple choice, free text, and slider questions, as
well as plain text, images, and even rapid sequences of stimuli (pictures, video, text, sound, port signals) just
like regular trials.

Examples
The following surveypage displays three questions:

<surveypage mypage>
/caption = "Please answer the following items to the best of your
ability"
/ questions=[1=q1; 2=q2; 3=q3]
</surveypage>

The following surveypage displays three questions, no back button, a custom label on the next button. At the
end of the page, it sets a custom value based on the response to the first question.

<surveypage mypage>
/caption = "Please answer the following items to the best of your
ability"
/ questions=[1=q1; 2=q2; 3=q3]
/ showbackbutton=false
/ nextlabel="Forward"
/ ontrialend = [if (radiobuttons.q1.response == 1) values.sex =
"female"]
</surveypage>

Send comments on this topic:

Page 279

Copyright Millisecond Software, LLC. All rights reserved.

Page 280

Inquisit Language Reference

textbox element
The textbox element defines a survey item in which respondents enter free text.

Syntax
<textbox textboxname>
/ caption = "text"

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ defaultresponse = "text" or property or expression
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)

/ mask = constraint or regular expression
/ maxchars = integer
/ minchars = integer
/ multiline = boolean
/ orientation = layout
/ position = (x value, y value)
/ range = (minimum, maximum)
/ required = boolean
/ responsefontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ size = (width variable, height variable)
/ subcaption = "text"
/ subcaptionfontstyle = ("face name", height, bold, italic, underline,
strikeout, quality, character set)
/ textboxsize = (width variable, height variable)

/ txcolor = (red value, green value, blue value) or color name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
</textbox>

Properties
textbox.textboxname.caption
textbox.textboxname.defaultresponse
textbox.textboxname.fontheight
textbox.textboxname.height
textbox.textboxname.heightpct
textbox.textboxname.heightpx
textbox.textboxname.hposition
textbox.textboxname.maxchars
textbox.textboxname.maxvalue
textbox.textboxname.minchars
textbox.textboxname.minvalue
textbox.textboxname.name
textbox.textboxname.required
textbox.textboxname.response

Page 281

textbox.textboxname.responsefontheight
textbox.textboxname.subcaption
textbox.textboxname.subcaptionfontheight
textbox.textboxname.textboxheight
textbox.textboxname.textboxwidth
textbox.textboxname.typename
textbox.textboxname.vposition
textbox.textboxname.width
textbox.textboxname.widthpct
textbox.textboxname.widthpx
textbox.textboxname.xpct
textbox.textboxname.xpx
textbox.textboxname.ypct
textbox.textboxname.ypx

Functions
None.

Remarks
The textbox element has a powerful set of features for validating and constraining the range of permissible
input. See the mask attribute for details.

Examples
The following textbox item asks the respondent to enter their age, constraining the response to be a positive
integer between 18 and 120.

<textbox q1>
/ caption="Please enter your age."
/ mask=positiveinteger
/ range = (18, 120)
</textbox>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 282

Inquisit Language Reference

list element
The list element is a general purpose class for storing and selecting any type of item.

Syntax
<list listname>

/ itemprobabilities = (value, value, value, ...] or [expression; expression;
expression; ...] or distribution
/ items = (item item item item item item ...) or [expression; expression;
expression;...]
/ maxrunsize = integer expression

/ not = (item item item item item item ...) or [expression; expression;
expression]
/ poolsize = integer expression
/ replace = boolean
/ resetinterval = integer

/ selectionmode = selectionmode or expression
/ selectionrate = rate
</list>

Properties
list.listname.currentindex
list.listname.currentvalue
list.listname.itemcount
list.listname.itemprobabilities
list.listname.items
list.listname.maximum
list.listname.maxrunsize
list.listname.mean
list.listname.median
list.listname.minimum
list.listname.name
list.listname.nextindex
list.listname.nextvalue
list.listname.poolitems
list.listname.poolsize
list.listname.replace
list.listname.selectedcount
list.listname.selectionmode
list.listname.selectionrate
list.listname.standarddeviation
list.listname.typename
list.listname.unselectedcount
list.listname.variance

Functions
list.listname.appenditem
list.listname.clearitems

Page 283

list.listname.indexof
list.listname.insertitem
list.listname.item
list.listname.removeitem
list.listname.reset
list.listname.resetselection
list.listname.setitem
list.listname.sort

Remarks
The list element is a data structure for storing ordered sets of items, whether they are strings, values,
properties, expressions, or compbinations thereof. It also provides simple and powerful methods for retrieving
items from the list. Retrieval can be filtered through built-in algorithms for sequential access and random
selection with or without replacement according to uniform or normal distributions. Items can also be retreived
according to custom expressions. Items can also be directly accessed by index through properties or
functions.

List can be created statically using the items attribute, or dynamically using the appenditem, insertitem,
removeitem, and clearitems functions. An ordered list of integers can be quickly be created by setting the
poolsize property. The values in the list will be null, but the currentindex and nextindex could be used for
random selection of integers ranging from 1 to the poolsize.

A list can be used drive stimulus item selection by setting /select = list.listName.nextvalue or /select =
list.listName.nextindex on the stimulus.

The list element provides a simpler and more predictable implementation of the functionality provided by the
counter element and also introduced new functionality. Although the counter element will continue to function
as it has, where possible script developers should the list element instead.

Examples
The following list stores a reverse sequence of numbers, selecting them in sequential order:

<list backwards>
/ items = (5, 4, 3, 2, 1)
/ selectionmode = sequence
</list>

The following randomly selects the name of a president without replacement:

<list presidents>
/ items = ("George Washington", "John Adams", "Thomas Jefferson")
</list>

The following selects a countdown of numbers:

<list countdown>
/ selectionmode = sequence
/ items = (3 2 1)
</list>

The following selects a value of 2 for odd numbered trials and 1 for even numbered trials:

<list evenodd>
/ selectionmode = sequence
/ items = [if (floor(mod(block.test.currenttrialnumber, 2)) == 0)
1 else 2]
</list>

Page 284

The following creates a list of 200 null values and randomly selects without replacement. All items are
replaced after 10 blocks or after all of them have been selected.

<list stimulusTracker>
/ poolsize = 200
/ resetinterval = 10
</list>

<picture targetPics>
/ items = targetItems
/ select = list.stimulusTracker.nextindex
</picture>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 285

Inquisit Language Reference

counter element
The counter element defines a sequential or randomly selected set of values used to vary experimental
conditions.

Syntax
<counter countername>
/ allowrepeats = boolean

/ select = integer or selectionmode or selectionmode(pool) or
dependency(stimulusname) or dependency(countername) or countername
/ items = (value, value, value,...)

/ not = (stimulusname, stimulusname, stimulusname) or (countername,
countername, countername)
/ resetinterval = integer
/ selectionrate = rate
</counter>

Properties
counter.countername.currentitem
counter.countername.currentitemnumber
counter.countername.item
counter.countername.itemcount
counter.countername.name
counter.countername.selectedcount
counter.countername.selectedindex
counter.countername.selectedvalue
counter.countername.selectionmode
counter.countername.selectionrate
counter.countername.typename
counter.countername.unselectedcount

Functions
None.

Remarks
The counter element can be used to determine which stimulus items are selected from trial to trial, providing
more control over item selection than is given by the stimulus element itself. Counters can also be used to
specify the values from trial to trial of variable attributes (for example, the horizontal and vertical screen
position of stimuli).

Examples
The following counter returns a sequence of numbers counting backwards from 5.

Page 286

<counter backwards>
/ select = sequence(5, 4, 3, 2, 1)
</counter>

The following counter randomly selects values from 1 to 200 without replacement. All items are replaced after
10 blocks or after all of them have been selected.

<counter mycounter>
/ select = noreplace(1-200)
/ resetinterval = 10
</counter>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 287

Inquisit Language Reference

values element
The values element contains custom variables that can be retrieved and updated throughout the course of a
script.

Syntax
<values>
/ valuename1
/ valuename2
/ valuename3
</values>

Properties
values.name
values.typename
values.valuename1
values.valuename2
values.valuename3

Functions
None.

Remarks
The values element allows you to store and update values for purposes of tracking, scoring, and displaying
information in an experiment. For example, values can be used to count the occurence of a particular event,
tally scores, and keep trial by trial statistics.

Examples
The following defines and initializes 3 variables for tracking the total score under different conditions.

<values>
/ congruentscore=0
/ incongruentscore=0
/ neutralscore=0
</values>

The following defines a variable that tracks the sum of squares of response latencies.

<values>
/ latencysumofsquares=0</values>

Page 288

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 289

Inquisit Language Reference

expressions element
The expressions element contains custom expressions that can be used throughout the script.

Syntax
<expressions>
/ expressionname1
/ expressionname2
/ expressionname3
</expressions>

Properties
expressions.expressionname1
expressions.expressionname2
expressions.expressionname3
expressions.name
expressions.typename

Functions
None.

Remarks
Sometimes a script may use long and complicated expressions, or reuse a given expression in a number of
places. The expression element allows you to define such expressions and assign them a name. You can
then conveniently refer to the expression by its name wherever it is used in the script. Expressions are
dynamically evaluated each time they are used so that they always reflect up to date values. Expressions
may include other expressions defined, although you should avoid circular references.

Examples
The following defines an expression that reflects the total score across three different conditions.

<expressions>
/ totalscore = values.congruentscore + values.incongruentscore +
values.neutralscore
</expressions>

The following defines an expression the returns whether the current trial is even or odd.

<expressions>
/ isoddnumberedtrial = (mod(script.trialcount) > 0) </expressions>

Page 290

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 291

Inquisit Language Reference

computer element
The computer element is a built-in element that exposes a number of properties of the current computer.

Syntax
<computer>
This element has no attributes
</computer>

Properties
computer.availablememory
computer.countrycode
computer.cpuspeed
computer.haskeyboard
computer.ipaddress
computer.language
computer.languagecode
computer.languageid
computer.macaddress
computer.memory
computer.os
computer.osmajorversion
computer.osminorversion
computer.platform
computer.timerresolution
computer.touch

Functions
computer.chartoscancode
computer.scancodetochar

Remarks
The computer element is a built-in object and can not be explicitly declared in a script. It exposes a number
of useful properties, however, that can be referenced in expressions throughout the script.

Examples

Page 292

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 293

Inquisit Language Reference

display element
The display element is a built-in element that exposes properties of the display system.

Syntax
<display>
This element has no attributes
</display>

Properties
display.canvasheight
display.canvaswidth
display.colordepth
display.height
display.heightpct
display.heightpx
display.refreshinterval
display.refreshrate
display.width
display.widthpct
display.widthpx

Functions
display.getmmx
display.getmmy
display.getpercentx
display.getpercenty
display.getpixelsx
display.getpixelsy

Remarks
The display element is a built-in object and can not be explicitly declared in a script. It exposes a number of
useful properties, however, that can be referenced in expressions throughout the script.

Examples

Send comments on this topic:

Page 294

Copyright Millisecond Software, LLC. All rights reserved.

Page 295

Inquisit Language Reference

inquisit element
The inquisit element is a built-in element that exposes a number of properties about the Inquisit application
running a given script.

Syntax
<inquisit>
This element has no attributes
</inquisit>

Properties
inquisit.applicationmode
inquisit.build
inquisit.releasedate
inquisit.version

Functions
None.

Remarks
The inquisit element is a built-in object and can not be explicitly declared in a script. It exposes a number of
useful properties, however, that can be referenced in expressions throughout the script.

Examples

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 296

Inquisit Language Reference

joystick element
The joystick element is a built-in element that exposes a number of properties reflecting the current state of
the joystick.

Syntax
<joystick>
This element has no attributes
</joystick>

Properties
joystick.button
joystick.buttona
joystick.buttonb
joystick.buttoncenter
joystick.buttondown
joystick.buttonguide
joystick.buttonl1
joystick.buttonl2
joystick.buttonl3
joystick.buttonleft
joystick.buttonr1
joystick.buttonr2
joystick.buttonr3
joystick.buttonright
joystick.buttonselect
joystick.buttonstart
joystick.buttonup
joystick.buttonx
joystick.buttony
joystick.leftx
joystick.lefty
joystick.pov
joystick.rightx
joystick.righty
joystick.rx
joystick.ry
joystick.rz
joystick.slider
joystick.x
joystick.y
joystick.z

Functions
None.

Page 297

Remarks
The joystick element is a built-in object and can not be explicitly declared in a script. It exposes a number of
useful properties, however, that can be referenced in expressions throughout the script.

Examples

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 298

Inquisit Language Reference

mouse element
The mouse element is a built-in element that exposes a number of properties reflecting the current state of
the mouse.

Syntax
<mouse>
This element has no attributes
</mouse>

Properties
mouse.monitor
mouse.x
mouse.y

Functions
None.

Remarks
The mouse element is a built-in object and can not be explicitly declared in a script. It exposes a number of
useful properties, however, that can be referenced in expressions throughout the script.

Examples

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 299

Inquisit Language Reference

script element
The script element is a built-in element that exposes a number of script level properties .

Syntax
<script>
This element has no attributes
</script>

Properties
script.completed
script.currentblock
script.currentblocknumber
script.currentexpt
script.currenttime
script.currenttrial
script.currenttrialnumber
script.elapsedtime
script.filename
script.fullpath
script.groupassignmentcode
script.groupid
script.sessionid
script.startdate
script.starttime
script.subjectid
script.trialcount

Functions
script.abort
script.debugbreak
script.debugtrace

Remarks
The script element is a built-in object and can not be explicitly declared in a script. It exposes a number of
useful properties, however, that can be referenced in expressions throughout the script.

Examples

Page 300

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 301

Inquisit Language Reference

eyetracker element
The eyetracker element enables Inquisit to receive and record real-time gaze data from an eyetracker.

Syntax
<eyetracker>
/ aoidurationthreshold = maxfixationtime
/ calibrationmode = mode
/ calibrationstimulus = stimulus
/ file = "location"
/ columns = (eyecolumn, eyecolumn, eyecolumn, property, property, property)
/ framerate = framerate
/ ipaddress = ipaddress
/ labels = ("label", "label", "label", ...)
/ plugin = "plugin name"
</eyetracker>

Properties
eyetracker.aoidurationthreshold
eyetracker.framerate
eyetracker.framerates
eyetracker.lastex
eyetracker.lastey
eyetracker.lastfixationx
eyetracker.lastfixationy
eyetracker.lasthasfixation
eyetracker.lastleftfixationx
eyetracker.lastleftfixationy
eyetracker.lastlefthasfixation
eyetracker.lastleftpupilheight
eyetracker.lastleftpupilwidth
eyetracker.lastleftvalidity
eyetracker.lastleftx
eyetracker.lastlefty
eyetracker.lastmarker
eyetracker.lastpupilheight
eyetracker.lastpupilwidth
eyetracker.lastrightfixationx
eyetracker.lastrightfixationy
eyetracker.lastrighthasfixation
eyetracker.lastrightpupilheight
eyetracker.lastrightpupilwidth
eyetracker.lastrightvalidity
eyetracker.lastrightx
eyetracker.lastrighty
eyetracker.lasttimestamp
eyetracker.lastx
eyetracker.lasty
eyetracker.maxleftpupilheight
eyetracker.maxleftpupilwidth
eyetracker.maxpupilheight
eyetracker.maxpupilwidth

Page 302

eyetracker.maxrightpupilheight
eyetracker.maxrightpupilwidth
eyetracker.meanleftpupilheight
eyetracker.meanleftpupilwidth
eyetracker.meanpupilheight
eyetracker.meanpupilwidth
eyetracker.meanrightpupilheight
eyetracker.meanrightpupilwidth
eyetracker.minleftpupilheight
eyetracker.minleftpupilwidth
eyetracker.minpupilheight
eyetracker.minpupilwidth
eyetracker.minrightpupilheight
eyetracker.minrightpupilwidth
eyetracker.plugin

Functions
None.

Remarks
The eyetracker requires a custom plugin for a given make of eyetracker that can be purchased separately
from Inquisit Lab. To date, we have released a plugin for Tobii eyetrackers, although plugins for other
eyetrackers may be released in the future. (Note - Inquisit can send markers to any eye tracker that accepts
parallel or serial port input without the use of this element and associated plugin.)

To initialize the plugin and enable access to gaze point data, simply specify the eye tracker element and set
the plugin attribute to the name of the plugin (e.g., "tobii"). Each plugin may optionally support additional
proprietary attributes specific to the eyetracker (see plugin-specific documentation). The eyetracker element
supports a set of properties common to all plugins. These properties report gaze point and pupil size along
with basic statistics on those data. The properties can be stored in the data file or used to dynamically
determine experimental flow.

Currently available eye tracker plugins:
* Inquisit 6 Tobii Plugin

Examples
The following defines an eyetracker element that communicates with a Tobii eyetracker. The eyetracker
element has properties that enable programmatic access to gaze data for use in gaze-contingent tasks.

<eyetracker>
/ plugin = "tobii"
</eyetracker>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 303

Inquisit Language Reference

eyetracker element

Inquisit Tobii Plugin
The following attributes and properties are supported by the Tobii Eyetracker plugin. To use these extensions,
the plugin attribute must be set to "tobii".

To use Inquisit with Tobii eye trackers, perform the following steps:
* Set up the eyetracker according to Tobii's instructions. Make sure it is plugged into your local network.
* Open an Inquisit script that defines the eyetracker element with plugin attribute set to "tobii" (sample scripts
are available from our library)
* Run the script. You will be asked to register the Inquisit 6 Tobii Plugin if you haven't already.

How to Program the Tobii Eye Tracker Plugin

Syntax
<eyetracker>
/ aoidurationthreshold = maxfixationtime
/ calibrationmode = mode
/ file = "location"

/ encrypt = true("password") or false
/ columns = (eyecolumn, eyecolumn, eyecolumn, property, property, property)
/ fixationwindowlength = fixationwindowlength
/ framerate = framerate
/ hostname = value
/ illuminationmode = value
/ ipaddress = ipaddress
/ labels = ("label", "label", "label", ...)
/ lowblinkmode = value
/ maxfixationtime = maxfixationtime
/ minfixationtime = minfixationtime
/ plugin = "tobii"
/ saccadethreshold = saccadethreshold
/ unitname = value
</eyetracker>

Properties
eyetracker.aoidurationthreshold
eyetracker.encrypt
eyetracker.encryptionkey
eyetracker.file
eyetracker.filename
eyetracker.fixationwindowlength
eyetracker.framerate
eyetracker.framerates
eyetracker.fullpath
eyetracker.ipaddress
eyetracker.lastex
eyetracker.lastey
eyetracker.lastfixationx
eyetracker.lastfixationy
eyetracker.lasthasfixation

Page 304

http://www.millisecond.com/download/library/tobii/

eyetracker.lastlefteyex
eyetracker.lastlefteyey
eyetracker.lastlefteyez
eyetracker.lastleftfixationx
eyetracker.lastleftfixationy
eyetracker.lastleftgazex
eyetracker.lastleftgazey
eyetracker.lastleftgazez
eyetracker.lastlefthasfixation
eyetracker.lastleftpupilheight
eyetracker.lastleftpupilwidth
eyetracker.lastleftvalidity
eyetracker.lastleftx
eyetracker.lastlefty
eyetracker.lastmarker
eyetracker.lastpupilheight
eyetracker.lastpupilwidth
eyetracker.lastrighteyex
eyetracker.lastrighteyey
eyetracker.lastrighteyez
eyetracker.lastrightfixationx
eyetracker.lastrightfixationy
eyetracker.lastrightgazex
eyetracker.lastrightgazey
eyetracker.lastrightgazez
eyetracker.lastrighthasfixation
eyetracker.lastrightpupilheight
eyetracker.lastrightpupilwidth
eyetracker.lastrightvalidity
eyetracker.lastrightx
eyetracker.lastrighty
eyetracker.lasttimestamp
eyetracker.lastx
eyetracker.lasty
eyetracker.maxfixationtime
eyetracker.maxfixationtime
eyetracker.maxleftpupilheight
eyetracker.maxleftpupilwidth
eyetracker.maxleftpupilwidth
eyetracker.maxpupilheight
eyetracker.maxpupilwidth
eyetracker.maxrightpupilheight
eyetracker.maxrightpupilwidth
eyetracker.maxrightpupilwidth
eyetracker.meanleftpupilheight
eyetracker.meanleftpupilwidth
eyetracker.meanpupilheight
eyetracker.meanpupilwidth
eyetracker.meanrightpupilheight
eyetracker.meanrightpupilwidth
eyetracker.minfixationtime
eyetracker.minfixationtime
eyetracker.minleftpupilheight
eyetracker.minleftpupilwidth
eyetracker.minpupilheight
eyetracker.minpupilwidth
eyetracker.minrightpupilheight
eyetracker.minrightpupilwidth
eyetracker.plugin
eyetracker.recorddata

Page 305

eyetracker.saccadethreshold
eyetracker.saccadethreshold

Functions
None.

Remarks

Examples
The following defines an eyetracker element that connects to a Tobii eyetracker at the given network ip
address.

<eyetracker>
/ plugin = "tobii"
/ ipaddress = "168.192.0.22"
</eyetracker>

The following defines a text element that displays the current width of the right pupil:

<text rightpupil>
/ items = ("Right Pupil Width: <% eyetracker.lastrightpupilwidth
%>")
</text>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 306

Inquisit Language Reference

defaults element
The defaults element specifies global default values for attributes in the script.

Syntax
<defaults>
/ bidirectional = boolean
/ blockfeedback = (metric, metric, metric, ...)
/ canvasaspectratio = (width, height)
/ canvasposition = (x value, y value)
/ canvassize = (width variable, height variable)
/ combaudrates = (port = baudrate, port = baudrate, port = baudrate, ...)

/ correctresponse = ("character", "character",...) or (scancode, scancode,
...) or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...)
or (joystickevent, joystickevent, ...) or ("word", "word", ...) or
(keyword) or (property, property, ...)
/ finishpage = "url"
/ fontstyle = ("face name", height, bold, italic, underline, strikeout,
quality, character set)
/ halign = alignment
/ inputdevice = modality
/ joystickthreshold = integer
/ lptaddresses = (port = address, port = address, port = address, ...)
/ minimumversion = "version"
/ posttrialpause = integer expression
/ pretrialpause = integer expression
/ quitcommand = (command key + scancode)

/ screencolor = (red value, green value, blue value) or color name or color
value
/ skipcommand = (command key + scancode)

/ txbgcolor = (red value, green value, blue value) or (transparent) or color
name or color value
/ txcolor = (red value, green value, blue value) or color name or color value
/ validresponse = ("character", "character",...) or (scancode, scancode, ...)
or (stimulusname, stimulusname, ...) or (mouseevent, mouseevent, ...) or
(joystickevent, joystickevent, ...) or ("word", "word", ...) or (keyword) or
(property, property, ...)
/ valign = alignment
/ voicekeythreshold = integer
/ windowsize = (width variable, height variable)
</defaults>

Properties
defaults.finishpage
defaults.fontheight
defaults.name
defaults.posttrialpause
defaults.pretrialpause
defaults.typename
defaults.windowcenter
defaults.windowdecunit
defaults.windowhitduration
defaults.windowincunit

Page 307

defaults.windowmaxcenter
defaults.windowmincenter
defaults.windowoffset
defaults.windowonset
defaults.windowwidth

Functions
None.

Remarks
The default element provides a convenient way to specify global settings that apply throughout the entire
script. For example, if a script contains multiple text elements that use a 12 point Arial font, the font can be
specified in the defaults element and each text element will automatically use that font. This is much more
convenient than specifying the font repeatedly for each text element. If the local element redefines a default
attribute, the local setting takes precedent over the default setting.

Examples
The following sets the default screen color to blue, font to Arial, and input device to mouse.

<default>
/ screencolor = (0,0,255)
/ fontstyle = ("Arial", 14pt, true)
/ inputdevice = mouse
</default>

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 308

Comments in Inquisit
Comments are text snippets in the script that the author intends to be ignored by Inquisit's script parser.
Typically, comments are notes the author writes in the script describing the purpose of the script, how it
works, or other useful information. Comments can make a script easier to understand for others, and they
can serve as reminders about easily forgotten details.

Inquisit's rules for comments are as follows:

1. Comments may appear anywhere outside of an element definition. In other words, they may not
appear between <element and </element>, where element is any Inquisit script element (e.g.,
<trial>, <block>, <picture>, <defaults>, etc.) Such comments can include any text except the
beginning of an element definition. That is, comments may not include "<element", where
element is any Inquisit script element (e.g., <trial>, <block>, <picture>, <defaults>, etc.)

2. Single line comments can appears within elements using "//". All text that appears on the same
line after this comment indicator is treated as a comment.

Page 309

Formatting Text Using HTML Markup
Inquisit supports two ways of formatting text to be displayed during an experiment. Inquisit can display
complete HTML documents using <html> and <htmlpage> elements. Using these elements, you have
access to all of the power and richness of HTML including text formatting, layout control, and display of
multimedia such as images, sound, and movies.

In some cases, a complete HTML document may be overkill, however, such as when you simply wish to
present a block of text with a particular phrase shown in bold or italics. With Inquisit 6, you can selectively
format snippets of text in your script by enclosing the those snippets in HMTL tags without creating a
separate HTML document. Formatting is specified using a subset of HTML 4 markup tags. Inquisit supports
display of richly formatted text in a number of different contexts including text elements, page elements, and
survey captions.

Inquisit automatically detect HTML markup and display rich text accordingly. For example, setting a <text>
element's item attribute as follows:

<text>

/ items = ("Hello <i>Inquisit!</i>")

<text>

will result in the text displaying like this:

Hello Inquisit!

When HTML markup is used for text, Inquisit follows the rules defined by the HTML 4 specification. This
includes default properties for text layout, such as the direction of the text flow (left-to-right) which can be
changed by applying the "dir" attribute to blocks of text.

Supported Tags
The following table lists the HTML tags supported by Inquisit's rich text formatting engine:

Tag Description Comment

a Anchor or link Supports the href and name attributes.

address Address

b Bold

big Larger font

blockquote Indented paragraph

body Document body Supports the bgcolor attribute, which can be a color name or a #RRGGBB
color specification.

Page 310

Tag Description Comment

br Line break

center Centered paragraph

cite Inline citation Same as i.

code Code Same as tt.

dd Definition data

dfn Definition Same as i.

div Document division Supports the standard block attributes.

dl Definition list Supports the standard block attributes.

dt Definition term Supports the standard block attributes.

em Emphasized Same as i.

font Font size, family,
and/or color

Supports the following attributes: size, face, and color (color names or
#RRGGBB).

h1 Level 1 heading Supports the standard block attributes.

h2 Level 2 heading Supports the standard block attributes.

h3 Level 3 heading Supports the standard block attributes.

h4 Level 4 heading Supports the standard block attributes.

h5 Level 5 heading Supports the standard block attributes.

h6 Level 6 heading Supports the standard block attributes.

head Document header

hr Horizontal line Supports the width attribute, which can be specified as an absolute or
relative (%) value.

html HTML document

i Italic

img Image Supports the src, source, width, and height attributes.

kbd User-entered text

meta Meta-information Encoding is stored using a meta tag, for example: <meta
http-equiv="Content-Type" content="text/html; charset=EUC-JP" />

Page 311

Tag Description Comment

li List item

nobr Non-breakable text

ol Ordered list Supports the standard list attributes.

p Paragraph Left-aligned by default. Supports the standard block attributes.

pre Preformated text

s Strikethrough

samp Sample code Same as tt.

small Small font

span Grouped elements

strong Strong Same as b.

sub Subscript

sup Superscript

table Table
Supports the following attributes: border, bgcolor (color names or
#RRGGBB), cellspacing, cellpadding, width (absolute or relative), and
height.

tbody Table body Does nothing.

td Table data cell Supports the standard table cell attributes.

tfoot Table footer Does nothing.

th Table header cell Supports the standard table cell attributes.

thead Table header If the thead tag is specified, it is used when printing tables that span
multiple pages.

title Document title

tr Table row Supports the bgcolor attribute, which can be a color name or a #RRGGBB
color specification.

tt Typewrite font

u Underlined

ul Unordered list Supports the standard list attributes.

var Variable Same as i.

Page 312

Block Attributes
The following attributes are supported by the div, dl, dt, h1, h2, h3, h4, h5, h6, p tags:

 align (left, right, center, justify)
 dir (ltr, rtl)

List Attributes
The following attribute is supported by the ol and ul tags:

 type (1, a, A, square, disc, circle)

Table Cell Attributes
The following attributes are supported by the td and th tags:

 width (absolute, relative, or no-value)
 bgcolor (color names or #RRGGBB)
 colspan
 rowspan
 align (left, right, center, justify)
 valign (top, middle, bottom)

CSS Properties
The following table lists the CSS properties supported by Inquisit's rich text formatting:

Property Values Description

background-col
or

<color> Background color for elements

background-im
age

<uri> Background image for elements

color <color> Text foreground color

font-family <family name> Font family name

font-size [small | medium | large | x-large |
xx-large] | <size>pt | <size>px

Font size relative to the document font, or specified in
points or pixels

font-style [normal | italic | oblique]

font-weight [normal | bold | 100 | 200 | 300 | 400 |
500 | 600 | 700 | 800 | 900]

Specifies the font weight used for text.

text-decoration none | [underline || overline ||
line-through]

Additional text effects

font [[<'font-style'> || <'font-weight'>]?
<'font-size'> <'font-family'>]

Font shorthand property

Page 313

Property Values Description

text-indent <length>px First line text indentation in pixels

white-space normal | pre | nowrap | pre-wrap Declares how whitespace in HTML is handled.

margin-top <length>px Top paragraph margin in pixels

margin-bottom <length>px Bottom paragraph margin in pixels

margin-left <length>px Left paragraph margin in pixels

margin-right <length>px Right paragraph margin in pixels

padding-top <length>px Top table cell padding in pixels

padding-bottom<length>px Bottom table cell padding in pixels

padding-left <length>px Left table cell padding in pixels

padding-right <length>px Right table cell padding in pixels

padding <length>px Shorthand for setting all the padding properties at
once.

vertical-align baseline | sub | super | middle | top |
bottom

Vertical text alignment. For vertical alignment in text
table cells only middle, top, and bottom apply.

border-collapse collapse | separate Border Collapse mode for text tables. If set to
collapse, cell-spacing will not be applied.

border-color <color> Border color for text tables and table cells.

border-top-color<color> Top border color for table cells.

border-bottom-
color

<color> Bottom border color for table cells.

border-left-color<color> Left border color for table cells.

border-right-col
or

<color> Right border color for table cells.

border-style
none | dotted | dashed | dot-dash |
dot-dot-dash | solid | double | groove |
ridge | inset | outset

Border style for text tables and table cells.

border-top-style<color> Top border style for table cells.

border-bottom-
style

<color> Bottom border style for table cells.

border-left-style<color> Left border style for table cells.

Page 314

Property Values Description

border-right-styl
e

<color> Right border style for table cells.

border-width <width>px Width of table or cell border

border-top-widt
h

<length>px Top border width for table cells.

border-bottom-
width

<length>px Bottom border width for table cells.

border-left-widt
h

<length>px Left border width for table cells.

border-right-wid
th

<length>px Right border width for table cells.

border-top <width>px <border-style>
<border-color>

Shorthand for setting top border width, style and color

border-bottom <width>px <border-style>
<border-color>

Shorthand for setting bottom border width, style and
color

border-left <width>px <border-style>
<border-color>

Shorthand for setting left border width, style and color

border-right <width>px <border-style>
<border-color>

Shorthand for setting right border width, style and
color

border-top <width>px <border-style>
<border-color>

Shorthand for setting top border width, style and color

border-bottom <width>px <border-style>
<border-color>

Shorthand for setting bottom border width, style and
color

border <width>px <border-style>
<border-color>

Shorthand for setting all four border's width, style and
color

background [<'background-color'> ||
<'background-image'>]

Background shorthand property

page-break-bef
ore

[auto | always] Make it possible to enforce a page break before the
paragraph/table

page-break-afte
r

[auto | always] Make it possible to enforce a page break after the
paragraph/table

float [left | right | none]
Specifies where an image or a text will be placed in
another element. Note that the float property is only
supported for tables and images.

text-transform [uppercase | lowercase] Select the transformation that will be performed on

Page 315

Property Values Description

the text prior to displaying it.

font-kerning [normal | none] Enables or disables kerning between text characters.

font-variant small-caps Perform the smallcaps transformation on the text prior
to displaying it.

word-spacing <width>px Specifies an alternate spacing between each word.

Supported CSS Selectors
All CSS 2.1 selector classes are supported except pseudo-class selectors such as :first-child, :visited and
:hover.

Page 316

Expressions
Inquisit supports a variety logical and arithmetic expressions. Expressions are a powerful feature that enable
you to create sophisticated and flexible scripts that dynamically adapt based on a wide range of inputs such
as the participant's responses, elapsed time, the computer's capabilities, and more. Best of all, expressions
allow you to express adaptive scripts in a natural, intuitive way, making it much easier than before to program
adaptive tasks.

If you are familiar with imperative programming languages like JavaScript, Java, C#, PHP, or C, Inquisit's
expression language syntax will be immediately recognizable to you. Inquisit's basic expression syntax
follows the same rules as these other languages.

Simple Statements
If an expression consists of a set of statements, each statement must be delimited by a ";". For example,
the following to statements keep a running total of the sum of all response latencies and the total correct
responses:

values.sumlatency = values.sumlatency + trial.test.latency;

values.totalcorrect = values.totalcorrect + trial.test.correct;

Compound Statements
In addition to simple statements, Inquisit expressions can also consist of compound statments such as "if",
"else if", and "else". For example, the following statement updates the sum of latencies only if the response
latency falls within a certain range:

if (trial.test.latency > 300 && trial.test.latency < 10000)

 values.sumlatency = values.sumlatency + trial.test.latency;

Multiple statements can be nested under and an "if" condition by placing the statements inside "{" and "}". In
the following example, the sum of latencies and total correct are updated only if the latency falls withing the
designated range:

if (trial.test.latency > 300 && trial.test.latency < 10000)

{

 values.sumlatency = values.sumlatency + trial.test.latency;

 values.totalcorrect = values.totalcorrect + trial.test.correct;

}

"If" conditionals can be accompanied by "else" statements to designated statements to be executed only if
the "if" conditional fails. If the following example, if the response latency falls outside the given range, a value

Page 317

tracking the number of discarded trials is incremented by 1:

if (trial.test.latency > 300 && trial.test.latency < 10000)

{

 values.sumlatency = values.sumlatency + trial.test.latency;

 values.totalcorrect = values.totalcorrect + trial.test.correct;

}

else

{

 values.discardedtrialscount += 1;

}

"Else if" statements allow you to include multiple conditionals. For example, the following updates a points
counter based on speed at which a response that was given, rewarding faster responses with more points:

if (trial.test.latency < 500)

{

 values.points += 10;

}

else if (trial.test.latency >= 500 && trial.test.latency <
1000)

{

 values.points += 5;

}

else if (trial.test.latency >= 100 && trial.test.latency <
1500)

{

 values.points += 1;

}

else

{

Page 318

 values.points -= 1;

}

Nested Statements
Conditional statements can also be nested within each other. The following updates a points counter based
on speed at which a response that was given, but only if the response was correct:

if (trial.response.correct)

{

 if (trial.test.latency > 500)

 {

 values.points += 10;

 }

 else if (trial.test.latency >= 500 && trial.test.latency <
1000)

 {

 values.points += 5;

 }

 else if (trial.test.latency >= 100 && trial.test.latency <
1500)

 {

 values.points += 1;

 }

 else

 {

 values.points -= 1;

 }

}

Operator reference. This topic covers the syntax for mathematical operations such as addition, subtraction,
multiplication, equality. It also covers logical operations such as tests for equality, inequality, greater than,
less than, logical AND, logical OR, and so on.

Function Reference. Inquisit contains numerous built in functions that can be used by expressions.

Page 319

Examples include fuctions for returning the maximum of two values, rounding real numbers to integers,
computing the natural logarithm of a value, and more.

Incorporating expressions into a script
There are a number of different Inquisit elements and attributes that make use of expressions. The following
provides an overview of how expressions can be used in a script. The reference topics elements and
attributes provide more detailed information on where expressions are valid.

Simple Attributes
Simple attributes are just regular old attributes that can be set to a single numeric value, or possibly a set of
numeric values. For example, the timeout attribute consists of a single numeric value, for example /timeout =
1000. The size attribute consists of two numeric attributes, for example /size = (200, 300). Inquisit allows you
to set these attribute values to either a constant number such as "5" or a numeric expression such as
"sqrt(5) + 22 - text.target.currentitemnumber".

As an example, imagine you are running a task in which subjects try to answer as many questions as
possible in 5 minutes. When their time is up, the current trial is interrupted and no more trials are run. One
way to achieve this is to set the timeout of each trial as a function of the time elapsed since the task started.
This might look like the following:

<trial timedtaska>

/ stimulustimes = [1=question]

/ validresponse = ("a", "b")

/ correctresponse = ("a")

/ timeout = 18000000 - block.timedtask.elapsedtime

</trial>

The above example computes the number of milliseconds remaining in the 5 minute period by subtracting the
number of milliseconds that have elapsed since the start of the block from 18000000, which is the number of
millisecond in a 5 minute interval.

There is a problem with this expression however, namely that it might return a negative number, which is not
a valid timeout value, or it might return 0, which Inquisit interprets to mean no timeout at all. We can fix this
by uses Inquisit's "max" function, which returns the maximum value of two expressions. The following
ensures that the timeout is never set to a value less than 1 millisecond.

<trial timedtaska>

/ stimulustimes = [1=question]

/ validresponse = ("a", "b")

/ correctresponse = ("a")

/ timeout = max(18000000 - block.timedtask.elapsedtime, 1)

</trial>

Page 320

Event Attributes
Inquisit 6 introduces a set of event attributes that allow you to execute logic at a particular time in the
experiment, such as at the beginning or end of a certain type of trial or block. These attributes allow you to
configure aspects of the script based on prior performance or tally up custom scores and metrics. Event
attributes include ontrialbegin, ontrialend, onblockbegin, onblockend, onexptbegin, and onexptend.

As an example, imagine a decision making task in which you award points based on correct decisions. There
are two types of decisions, a relative easy type worth 2 points and a harder type worth 5 points. Using the
ontrialend attribute, this is easily accomplished.

First, we'll define a custom value called "score" used to store respondent's running score.

<values>

/ score = 0

</values>

Next, we'll define the ontrialend attribute on our easy trial to add 2 points to the score with each correct
response.

<trial easydecision>

/ stimulusframes = [1 = easydecisions]

/ validresponse = ("a", "b")

/ ontrialend=[values.score = values.score + 2 *
trial.easydecision.correct]

</trial>

Note that the trial.easydecision.correct property is set to 1 for a correct response and 0 for an incorrect
response, so we can simply multiply this property by 2 and add the result to the score. Another way to
accomplish the same thing would be to use conditional logic as follows.

<trial easydecision>

/ stimulusframes = [1 = easydecisions]

/ validresponse = ("a", "b")

/ ontrialend= [

 if (trial.easydecision.correct == 1)

 values.score = values.score + 2;

]

</trial>

Here, we check if the response was correct, and if so, we add two 2 points.

The last step is to define the ontrialend attribute on our difficult trial, which adds 5 points for each correct
response.

Page 321

<trial harddecision>

/ stimulusframes = [1 = harddecisions]

/ validresponse = ("a", "b")

/ ontrialend = [

 values.score = values.score + 5 * trial.harddecision.correct;

]

</trial>

Task Flow Attributes
Task flow attributes allow you to conditionally determine the flow of a procedure based on prior performance.
For example, a script might repeat a practice block of trials until the percent of correct responses meets
some criteria before moving on to the critical blocks. Another script may skip a certain type of trial based on
the response to a previous question. Flow attributes include branch, skip, repeat, and stop.

As an example, imagine you wish to provide adaptive feedback to participants based on how well they
perform a task. Specifically, if they make 5 correct responses in a row, they are shown a message of
encouragement. If they make 3 incorrect responses in a row, they are shown a message warning them to
slow down and concentrate on the task.

First, we'll define the two trials used to display the encouragement and warning feedback. Note that since
these are just feedback trials, we use the recorddata command to prevent the data from these trials from
being added to the data file.

<trial encouragement>

/ stimulusframes = [1 = encouragingwords]

/ validresponse = (" ")

/ recorddata = false

</trial>

<trial warning>

/ stimulusframes = [1 = warningwords]

/ validresponse = (" ")

/ recorddata = false

</trial>

Next, we'll define the trial that runs the main task. This trial includes two branch commands, the first of which
runs the encouraging feedback trial and the second that runs the warning.

<trial maintask>

/ stimulusframes = [1 = taskstimulus]

Page 322

/ validresponse = ("a", "b")

/ branch = [

 if (mod(trial.maintask.correctstreak, 5) == 0 &&
trial.maintask.correctstreak != 0)

 trial.encouragement;

]

/ branch = [

 if (mod(trial.maintask.errorstreak, 3) == 0 &&
trial.maintask.errorstreak 1 != 0)

 trial.warning;

]

</trial>

The first branch uses the mod function, which returns the remainder when the first argument,
trial.maintask.correctstreak, is divided by the second argument, 5. If the correctstreak is a multiple of 5 (e.g.,
5, 10, 15, ...), the remainder is 0 and the first statement in the condition is true. However, the mod function
also returns 0 if the correctstreak is 0, in which case we don't want to show the encouragement trial. So, a
second statement checking whether the correctstreak is 0 has been added. Now the encouragement trial is
run after ever streak of 5 correct responses.

The second branch is similar, except that it shows a warning trial for every streak of 3 incorrect responses.

Stimulus Items
Expressions can also be incorporated into stimulus items in order to be displayed on the screen. For
example, a text stimulus might include expressions representing their performance, a score, or the amount of
time remaining in a task. In order to distinguish regular text from text that should be evaluated as an
expression, expressions must appear between <% and %>. Anything appearing between these delimiters will
be evaluated as an expression. Otherwise, the text is displayed as is.

The following example shows a text item that displays a participant's total score on a judgment and decision
making task by adding subscores from phase 1 and 2:

<text score>

/ items = ("Total score: <% values.phase1score + values.phase2score
%>")

/ position = (50%, 5%)

</text>

The following text shows the number of minutes that have passed since the start of the session. Since the
script.elapsedtime property returns the duration in millisecond, the value is divided by 60000 and rounded to
the nearest integer to convert it to minutes:

<text elapsedminutes>

/ items = ("Total minutes: <% round(script.elapsetime / 60000) %>")

Page 323

/ position = (50%, 5%)

</text>

Instruction Pages
Just like stimulus items, expressions can also be inserted into instruction pages. Again, anything appearing
between expressions must appear between <% and %> is evaluated as an expression. Otherwise the text or
html is displaed as it is.

The following instruction page shows the mean latency on a block rounded to the nearest integer.

<page feedback>

Your average response time was <% round(block.test.meanlatency) %>

</page>

Page 324

Operators
Inquisit expressions supports all of the basic operators for doing arithmetic, comparing values, and creating
logical statements. The complete list of operators and their syntax is listed below.

Arithmetic Operators
Arithmetic operators are used to perform additional, subtraction, multiplication, and division.

Operator Description Examples

+ Adds numeric operands or concatenates two or more
strings.

trial.condition1.correctcount +
trial.condition2.correctcount

values.firstscore + values.secondscore

response.rw.windowcenter + 500

- Subtracts numeric operands.

100 - trial.mytrial.percentcorrect

block.incompat.meanlatency -
block.compat.meanlatency

* Multiplies numeric operands.
trial.test.correctcount * 5

trial.test.trialcount * trial.test.meanlatency

/ Divides numeric operands.

trial.mytrial.percentcorrect / 100

block.myblock.sumlatency /
block.myblock.trialcount

+= Adds the value of an expression to the value of a
variable and assigns the result to the variable.

values.trialcount += 1

values.totalfalsealarms +=
values.falsealarmcount

-= Subtracts the value of an expression to the value of a
variable and assigns the result to the variable.

values.remainingtrialcount -= 1

values.totalpoints -= values.errorcount

Comparison Operators
Comparison operators compare the values of the right and left operands and return a Boolean value of true or
false.

Operator Description Examples

== True if the right and left values are equal. Otherwise false.
trial.iat.trialcount == 100

block.compat.percentcorrect == 0

trial.foo.correct == 1

!= True if the left and right values are not equal. Otherwise false.

trial.iat.trialcount != 1

block.compat.percentcorrect != 100

response.rw.windowcenter != 0

Page 325

< True if the left value is less than the right. Otherwise false.

trial.iat.trialcount < 25

block.compat.percentcorrect < 100

trial.test.latency < 500

<= True if the left value is less than or equal to the right.
Otherwise false.

trial.iat.trialcount <= 25

block.compat.percentcorrect <= 100

trial.test.latency <= 500

> True if the left value is greater than the right. Otherwise false.

trial.iat.currenttrialnumber > 25

block.compat.percentcorrect > 50

trial.test.latency > 500

>= True if the left value is greater than or equal to the right.
Otherwise false.

trial.iat.currenttrialnumber >= 25

block.compat.percentcorrect >= 50

trial.test.latency >= 500

Assignment Operator
The assigment operator assigns a value to a property. Note that the operand on the left must be a writable
property. Many properties (computer.cpuspeed, for example) are read-only values that can not be changed.
An expression that attempts to assign a value to a read-only property will fail.

Operator Description Examples

= Sets the value of the left operand to that of
the right.

items.targets.item.1 = trial.gettargets.response

response.rw.windowcenter =
response.rw.windowcenter - 100

values.score = trial.game.correctcount * 5

Logical Operators
Logical operators return true or false depending on whether the operands are true or false. These operators
are especially useful in conditional if-else statements that involve multiple conditions.

Operator Description Examples

&&
Logical AND. True if both the left AND
right operators are true. False if either
operand is false.

if (block.test1.percentcorrect == 100 &&
block.test2.percentcorrect == 100) values.perfectscore
= true

if (block.test.percentcorrect < 70 &&
block.test.medianlatency > 500)
response.rw.windowcenter = 600

||
Logical OR. True if either the left OR right
operand is true. False if both operands are
false.

if (block.test1.percentcorrect < 100 ||
block.test2.percentcorrect < 100) values.perfectscore =
false

if (trial.test.latency < 100 || trial.test.latency > 1000)
values.discard = true

! Logical NOT. True if the operand is NOT
true. False if the operand is NOT false.

values.imperfect = !values.perfect

Page 326

Conditional Statements
Conditional statements consist of two parts, a condition that evaluates to true or false, and a statement that
is evaluated if the condition part is true. Conditional statements are often referred to as "if-else" statements.
These are useful for event logic that conditionally updates values. They are also used by the branch attribute
to determine whether any branching should occur.

Statement Description Examples

if ... else if ...
else

If the condition is true, then evaluate
the first statement, otherwise
evaluate the second statement.

if (block.test1.percentcorrect == 100 &&
block.test2.percentcorrect == 100) values.perfectscore =
true

if (block.test.percentcorrect < 70 &&
block.test.medianlatency > 500)
response.rw.windowcenter = 600

if (block.test1.percentcorrect < 100 ||
block.test2.percentcorrect < 100) values.perfectscore =
false else values.perfectscore = true

Precedence and Grouping
You can use parentheses to set the order in which operations are applied, or to make your statements easier
to read.

Delimiter Description Examples

() Contains a set of statements that
should be evaluated as a unit.

values.imperfect = (trial.test2.sumlatency +
trial.test1.sumlatency) / (trial.test2.trialcount +
trial.test1.trialcount)

Multiple Statements
Multiple statements can be expressed in event logic by separating each statement with a semi-colon.

Delimiter Description Examples

; Delimiter for multiple
statements

values.imperfect = !values.perfect; items.targets.item.1 =
trial.gettargets.response; values.score = trial.game.correctcount * 5

Page 327

Inquisit Language Reference

Global Functions
Inquisit supports the following list of built-in global functions.

Functions
abs
acos
asin
atan
atan2
capitalize
ceil
clear
clip
concat
constant
contains
correctcount
correctstreak
cos
cosh
count
deg
endswith
errorcount
errorstreak
evaluate
exp
floor
format
fpart
getitem
ifelse
insert
inwindowcount
inwindowstreak
ipart
length
ln
log
logn
max
maxlatency
meanlatency
medianlatency
min
minlatency
mod
noreplace
noreplacecorrect
noreplaceerror
noreplacenorepeat

Page 328

notinwindowcount
notinwindowstreak
percentcorrect
percentinwindow
pofz
pow
rad
rand
randbernoulli
randbinomial
randchisquared
randexponential
randgamma
randgaussian
randgeometric
randlognormal
randpoisson
random
remove
replace
replaceall
replacenorepeat
reset
round
sdlatency
search
select
selectedcount
sequence
sin
sinh
sqrt
startswith
substring
sumlatency
tan
tanh
tolower
totalcorrectcount
totalcount
totalerrorcount
totalinwindowcount
totalmaxlatency
totalmeanlatency
totalmedianlatency
totalminlatency
totalnotinwindowcount
totalnumcorrect
totalpercentcorrect
totalpercentinwindow
totalsdlatency
totalsumlatency
totaltrialcount
totalvarlatency
toupper
trialcount
trim
trimleft
trimright
unselectedcount

Page 329

varlatency
zofp

Send comments on this topic:
Copyright Millisecond Software, LLC. All rights reserved.

Page 330

Constants
Inquisit includes a number of built-in constants that provide a convenient way to represent commonly used
mathematical values in expressions.

Name Description Value

m_e The base of natural logarithms, e. e (2.71828182845904523536)

m_log2e The base 2 logarithm of e. log2(e) (1.44269504088896340736)

m_log10e The base 2 logarithm of e. log10(e) (0.434294481903251827651)

m_ln2 The natural logarithm of 2. ln(2) (0.693147180559945309417)

m_ln10 The natural logarithm of 10. ln(10) (2.30258509299404568402)

m_pi The circumference of a circle with diameter 1, π. π (3.14159265358979323846)

m_pi_2 Half of π. π/2 (1.57079632679489661923)

m_pi_4 A quarter of π. π/4 (0.785398163397448309616)

m_1_pi The inverse of π. 1/π (0.318309886183790671538)

m_2_pi Twice the inverse of π. 2/π (0.636619772367581343076)

m_2_sqrtpi The inverse of the square root of π. 2/(√ π) (1.12837916709551257390)

true boolean true 1
false boolean false 0
null nothing or unspecified 0

Page 331

	Inquisit Help
	Introduction
	Inquisit Tutorials
	IAT with Custom Categories and Items
	Modifying Attribute Categories
	Modifying Target Categories
	Modifying Instructions
	Changing Response Keys

	Standard Picture IAT
	Creating Text Stimuli
	Creating Instructions
	Creating Trials
	Creating Blocks
	Creating an Experiment

	Simplified IAT
	Creating Text Stimuli
	Creating Instructions
	Creating Trials
	Creating Blocks
	Creating an Experiment

	Subliminal Priming Task
	Creating Text Stimuli
	Creating Instructions
	Creating Trials
	Creating Blocks
	Creating an Experiment

	Covert Attention Task
	Creating Text Stimuli
	Creating Instructions
	Creating Trials
	Creating Blocks
	Creating an Experiment

	Dot Probe Task
	Creating Text Stimuli
	Creating Instructions
	Creating Trials
	Creating Blocks
	Creating an Experiment

	Demographic Survey Tutorial
	Creating Survey Questions
	Creating Survey Questions (continued)
	Creating Survey Pages
	Creating the Survey

	How To
	Run an Experiment
	Launch Inquisit Using Command Line Parameters
	Run Individual Blocks, Trials, and Stimuli
	Present Stimulus Items Provided by Subjects
	Present Stimulus Pairs
	Test a Script
	Debug a Script
	Interrupt an Experiment
	Erase Stimuli
	Analyze Voice Recordings
	Adjust the Response Window
	Control Response Timing
	Control Trial Duration and Inter-Trial Intervals
	Setup Speech Recognition
	Present TTL Signals Through the Parallel Port
	Use the Parallel Port Monitor Tool
	Cedrus RB Series and Lumina Response Pads
	Cedrus StimTracker
	Record Responses from a Serial Response Box
	How to Run an Inquisit 6 Experiment on the Web
	Combine Multiple Data Files into a Single File
	How to do Conditional Branching
	Running Sequences of Inquisit Scripts and Other Applications
	Combine Multiple Scripts
	How to Interoperate Inquisit with Online Survey Packages
	How to Use the Inquisit SR Research Plugin
	How to Use the Inquisit Tobii Plugin
	
	

	Inquisit Web
	Introducing Inquisit 6 Web
	How to Run an Inquisit Experiment on the Web
	Gathering Data Over the Web
	Assigning Subject Numbers in Web Experiments

	Language Reference
	Stimuli
	item
	clock
	picture
	port
	shape
	sound
	systembeep
	text
	video
	xid
	Special Characters

	Trials and Tasks
	trial
	likert
	openended
	surveypage
	response
	Keyboard Scan Codes

	Blocks of Trials
	block
	survey

	Instructions
	instruct
	page
	htmlpage

	Experiments
	batch
	expt
	include

	Data Recording
	data
	summarydata
	monkey
	Data Format

	Surveys
	caption
	checkboxes
	dropdown
	image
	listbox
	radiobuttons
	slider
	survey
	surveypage
	textbox

	Selection and Randomization
	list
	counter

	Values and Expressions
	values
	expressions

	Implicit Elements
	computer
	display
	inquisit
	joystick
	mouse
	script

	Eye Tracking
	eyetracker
	eyetracker (tobii)

	defaults
	Comments
	Formatting Text Using HTML Markup
	Expression Language
	Overview
	Operators
	Global Functions
	Constants

